rustls/crypto/mod.rs
1use alloc::borrow::Cow;
2use alloc::boxed::Box;
3use alloc::vec::Vec;
4use core::borrow::Borrow;
5use core::fmt::Debug;
6use core::ops::Deref;
7
8use pki_types::PrivateKeyDer;
9use zeroize::Zeroize;
10
11use crate::enums::ProtocolVersion;
12use crate::error::{ApiMisuse, Error};
13use crate::msgs::ffdhe_groups::FfdheGroup;
14use crate::msgs::handshake::ALL_KEY_EXCHANGE_ALGORITHMS;
15use crate::sync::Arc;
16pub use crate::webpki::{
17 WebPkiSupportedAlgorithms, verify_tls12_signature, verify_tls13_signature,
18};
19#[cfg(doc)]
20use crate::{ClientConfig, ConfigBuilder, ServerConfig, client, crypto, server};
21use crate::{NamedGroup, SupportedCipherSuite, Tls12CipherSuite, Tls13CipherSuite};
22
23/// *ring* based CryptoProvider.
24#[cfg(feature = "ring")]
25pub mod ring;
26
27/// aws-lc-rs-based CryptoProvider.
28#[cfg(feature = "aws-lc-rs")]
29pub mod aws_lc_rs;
30
31/// TLS message encryption/decryption interfaces.
32pub mod cipher;
33
34/// Hashing interfaces.
35pub mod hash;
36
37/// HMAC interfaces.
38pub mod hmac;
39
40/// Cryptography specific to TLS1.2.
41pub mod tls12;
42
43/// Cryptography specific to TLS1.3.
44pub mod tls13;
45
46/// Hybrid public key encryption (RFC 9180).
47pub mod hpke;
48
49// Message signing interfaces.
50mod signer;
51pub use signer::{
52 CertificateIdentity, Credentials, Identity, SelectedCredential, Signer, SigningKey,
53 SingleCredential, public_key_to_spki,
54};
55
56pub use crate::msgs::handshake::KeyExchangeAlgorithm;
57pub use crate::rand::GetRandomFailed;
58pub use crate::suites::CipherSuiteCommon;
59
60/// Controls core cryptography used by rustls.
61///
62/// This crate comes with two built-in options, provided as
63/// `CryptoProvider` structures:
64///
65/// - [`crypto::aws_lc_rs::DEFAULT_PROVIDER`]: (behind the `aws-lc-rs` crate feature).
66/// This provider uses the [aws-lc-rs](https://github.com/aws/aws-lc-rs)
67/// crate. The `fips` crate feature makes this option use FIPS140-3-approved cryptography.
68/// - [`crypto::ring::DEFAULT_PROVIDER`]: (behind the `ring` crate feature).
69/// This provider uses the [*ring*](https://github.com/briansmith/ring) crate.
70///
71/// This structure provides defaults. Everything in it can be overridden at
72/// runtime by replacing field values as needed.
73///
74/// # Using the per-process default `CryptoProvider`
75///
76/// There is the concept of an implicit default provider, configured at run-time once in
77/// a given process.
78///
79/// It is used for functions like [`ClientConfig::builder()`] and [`ServerConfig::builder()`].
80///
81/// The intention is that an application can specify the [`CryptoProvider`] they wish to use
82/// once, and have that apply to the variety of places where their application does TLS
83/// (which may be wrapped inside other libraries).
84/// They should do this by calling [`CryptoProvider::install_default()`] early on.
85///
86/// To achieve this goal:
87///
88/// - _libraries_ should use [`ClientConfig::builder()`]/[`ServerConfig::builder()`]
89/// or otherwise rely on the [`CryptoProvider::get_default()`] provider.
90/// - _applications_ should call [`CryptoProvider::install_default()`] early
91/// in their `fn main()`. If _applications_ uses a custom provider based on the one built-in,
92/// they can activate the `custom-provider` feature to ensure its usage.
93///
94/// # Using a specific `CryptoProvider`
95///
96/// Supply the provider when constructing your [`ClientConfig`] or [`ServerConfig`]:
97///
98/// - [`ClientConfig::builder_with_provider()`]
99/// - [`ServerConfig::builder_with_provider()`]
100///
101/// When creating and configuring a webpki-backed client or server certificate verifier, a choice of
102/// provider is also needed to start the configuration process:
103///
104/// - [`client::WebPkiServerVerifier::builder_with_provider()`]
105/// - [`server::WebPkiClientVerifier::builder_with_provider()`]
106///
107/// If you install a custom provider and want to avoid any accidental use of a built-in provider, the feature
108/// `custom-provider` can be activated to ensure your custom provider is used everywhere
109/// and not a built-in one. This will disable any implicit use of a built-in provider.
110///
111/// # Making a custom `CryptoProvider`
112///
113/// Your goal will be to populate an instance of this `CryptoProvider` struct.
114///
115/// ## Which elements are required?
116///
117/// There is no requirement that the individual elements ([`SupportedCipherSuite`], [`SupportedKxGroup`],
118/// [`SigningKey`], etc.) come from the same crate. It is allowed and expected that uninteresting
119/// elements would be delegated back to one of the default providers (statically) or a parent
120/// provider (dynamically).
121///
122/// For example, if we want to make a provider that just overrides key loading in the config builder
123/// API (with [`ConfigBuilder::with_single_cert`], etc.), it might look like this:
124///
125/// ```
126/// # #[cfg(feature = "aws-lc-rs")] {
127/// # use std::sync::Arc;
128/// # mod fictitious_hsm_api { pub fn load_private_key(key_der: pki_types::PrivateKeyDer<'static>) -> ! { unreachable!(); } }
129/// use rustls::crypto::aws_lc_rs;
130///
131/// pub fn provider() -> rustls::crypto::CryptoProvider {
132/// rustls::crypto::CryptoProvider{
133/// key_provider: &HsmKeyLoader,
134/// ..aws_lc_rs::DEFAULT_PROVIDER
135/// }
136/// }
137///
138/// #[derive(Debug)]
139/// struct HsmKeyLoader;
140///
141/// impl rustls::crypto::KeyProvider for HsmKeyLoader {
142/// fn load_private_key(&self, key_der: pki_types::PrivateKeyDer<'static>) -> Result<Box<dyn rustls::crypto::SigningKey>, rustls::Error> {
143/// fictitious_hsm_api::load_private_key(key_der)
144/// }
145/// }
146/// # }
147/// ```
148///
149/// ## References to the individual elements
150///
151/// The elements are documented separately:
152///
153/// - **Random** - see [`crypto::SecureRandom::fill()`].
154/// - **Cipher suites** - see [`SupportedCipherSuite`], [`Tls12CipherSuite`], and
155/// [`Tls13CipherSuite`].
156/// - **Key exchange groups** - see [`crypto::SupportedKxGroup`].
157/// - **Signature verification algorithms** - see [`crypto::WebPkiSupportedAlgorithms`].
158/// - **Authentication key loading** - see [`crypto::KeyProvider::load_private_key()`] and
159/// [`SigningKey`].
160///
161/// # Example code
162///
163/// See custom [`provider-example/`] for a full client and server example that uses
164/// cryptography from the [`RustCrypto`] and [`dalek-cryptography`] projects.
165///
166/// ```shell
167/// $ cargo run --example client | head -3
168/// Current ciphersuite: TLS13_CHACHA20_POLY1305_SHA256
169/// HTTP/1.1 200 OK
170/// Content-Type: text/html; charset=utf-8
171/// Content-Length: 19899
172/// ```
173///
174/// [`provider-example/`]: https://github.com/rustls/rustls/tree/main/provider-example/
175/// [`RustCrypto`]: https://github.com/RustCrypto
176/// [`dalek-cryptography`]: https://github.com/dalek-cryptography
177///
178/// # FIPS-approved cryptography
179/// The `fips` crate feature enables use of the `aws-lc-rs` crate in FIPS mode.
180///
181/// You can verify the configuration at runtime by checking
182/// [`ServerConfig::fips()`]/[`ClientConfig::fips()`] return `true`.
183#[allow(clippy::exhaustive_structs)]
184#[derive(Debug, Clone)]
185pub struct CryptoProvider {
186 /// List of supported TLS1.2 cipher suites, in preference order -- the first element
187 /// is the highest priority.
188 ///
189 /// Note that the protocol version is negotiated before the cipher suite.
190 ///
191 /// The `Tls12CipherSuite` type carries both configuration and implementation.
192 ///
193 /// A valid `CryptoProvider` must ensure that all cipher suites are accompanied by at least
194 /// one matching key exchange group in [`CryptoProvider::kx_groups`].
195 pub tls12_cipher_suites: Cow<'static, [&'static Tls12CipherSuite]>,
196
197 /// List of supported TLS1.3 cipher suites, in preference order -- the first element
198 /// is the highest priority.
199 ///
200 /// Note that the protocol version is negotiated before the cipher suite.
201 ///
202 /// The `Tls13CipherSuite` type carries both configuration and implementation.
203 pub tls13_cipher_suites: Cow<'static, [&'static Tls13CipherSuite]>,
204
205 /// List of supported key exchange groups, in preference order -- the
206 /// first element is the highest priority.
207 ///
208 /// The first element in this list is the _default key share algorithm_,
209 /// and in TLS1.3 a key share for it is sent in the client hello.
210 ///
211 /// The `SupportedKxGroup` type carries both configuration and implementation.
212 pub kx_groups: Cow<'static, [&'static dyn SupportedKxGroup]>,
213
214 /// List of signature verification algorithms for use with webpki.
215 ///
216 /// These are used for both certificate chain verification and handshake signature verification.
217 ///
218 /// This is called by [`ConfigBuilder::with_root_certificates()`],
219 /// [`server::WebPkiClientVerifier::builder_with_provider()`] and
220 /// [`client::WebPkiServerVerifier::builder_with_provider()`].
221 pub signature_verification_algorithms: WebPkiSupportedAlgorithms,
222
223 /// Source of cryptographically secure random numbers.
224 pub secure_random: &'static dyn SecureRandom,
225
226 /// Provider for loading private [`SigningKey`]s from [`PrivateKeyDer`].
227 pub key_provider: &'static dyn KeyProvider,
228}
229
230impl CryptoProvider {
231 /// Sets this `CryptoProvider` as the default for this process.
232 ///
233 /// This can be called successfully at most once in any process execution.
234 ///
235 /// Call this early in your process to configure which provider is used for
236 /// the provider. The configuration should happen before any use of
237 /// [`ClientConfig::builder()`] or [`ServerConfig::builder()`].
238 pub fn install_default(self) -> Result<(), Arc<Self>> {
239 static_default::install_default(self)
240 }
241}
242
243impl CryptoProvider {
244 /// Returns the default `CryptoProvider` for this process.
245 ///
246 /// This will be `None` if no default has been set yet.
247 pub fn get_default() -> Option<&'static Arc<Self>> {
248 static_default::get_default()
249 }
250
251 /// An internal function that:
252 ///
253 /// - gets the pre-installed default, or
254 /// - installs one `from_crate_features()`, or else
255 /// - panics about the need to call [`CryptoProvider::install_default()`]
256 pub(crate) fn get_default_or_install_from_crate_features() -> &'static Arc<Self> {
257 if let Some(provider) = Self::get_default() {
258 return provider;
259 }
260
261 let provider = Self::from_crate_features()
262 .expect(r###"
263Could not automatically determine the process-level CryptoProvider from Rustls crate features.
264Call CryptoProvider::install_default() before this point to select a provider manually, or make sure exactly one of the 'aws-lc-rs' and 'ring' features is enabled.
265See the documentation of the CryptoProvider type for more information.
266 "###);
267 // Ignore the error resulting from us losing a race, and accept the outcome.
268 let _ = provider.install_default();
269 Self::get_default().unwrap()
270 }
271
272 /// Returns a provider named unambiguously by rustls crate features.
273 ///
274 /// This function returns `None` if the crate features are ambiguous (ie, specify two
275 /// providers), or specify no providers, or the feature `custom-provider` is activated.
276 /// In all cases the application should explicitly specify the provider to use
277 /// with [`CryptoProvider::install_default`].
278 ///
279 /// This can be used to check if a default provider is available before
280 /// invoking functions that require an installed `CryptoProvider`, like
281 /// [`ClientConfig::builder()`] or [`ServerConfig::builder()`].
282 ///
283 /// ```rust,no_run
284 /// # use rustls::crypto::CryptoProvider;
285 /// if CryptoProvider::get_default().is_some() || CryptoProvider::from_crate_features().is_some() {
286 /// // A default provider is available, either from the
287 /// // process-level default or from the crate features.
288 /// }
289 /// ```
290 ///
291 /// [`ClientConfig::builder()`]: crate::ClientConfig::builder
292 /// [`ServerConfig::builder()`]: crate::ServerConfig::builder
293 pub fn from_crate_features() -> Option<Self> {
294 #[cfg(all(
295 feature = "ring",
296 not(feature = "aws-lc-rs"),
297 not(feature = "custom-provider")
298 ))]
299 {
300 return Some(ring::DEFAULT_PROVIDER);
301 }
302
303 #[cfg(all(
304 feature = "aws-lc-rs",
305 not(feature = "ring"),
306 not(feature = "custom-provider")
307 ))]
308 {
309 return Some(aws_lc_rs::DEFAULT_PROVIDER);
310 }
311
312 #[allow(unreachable_code)]
313 None
314 }
315
316 /// Returns `true` if this `CryptoProvider` is operating in FIPS mode.
317 ///
318 /// This covers only the cryptographic parts of FIPS approval. There are
319 /// also TLS protocol-level recommendations made by NIST. You should
320 /// prefer to call [`ClientConfig::fips()`] or [`ServerConfig::fips()`]
321 /// which take these into account.
322 pub fn fips(&self) -> bool {
323 let Self {
324 tls12_cipher_suites,
325 tls13_cipher_suites,
326 kx_groups,
327 signature_verification_algorithms,
328 secure_random,
329 key_provider,
330 } = self;
331 tls12_cipher_suites
332 .iter()
333 .all(|cs| cs.fips())
334 && tls13_cipher_suites
335 .iter()
336 .all(|cs| cs.fips())
337 && kx_groups.iter().all(|kx| kx.fips())
338 && signature_verification_algorithms.fips()
339 && secure_random.fips()
340 && key_provider.fips()
341 }
342
343 pub(crate) fn consistency_check(&self) -> Result<(), Error> {
344 if self.tls12_cipher_suites.is_empty() && self.tls13_cipher_suites.is_empty() {
345 return Err(ApiMisuse::NoCipherSuitesConfigured.into());
346 }
347
348 if self.kx_groups.is_empty() {
349 return Err(ApiMisuse::NoKeyExchangeGroupsConfigured.into());
350 }
351
352 // verifying cipher suites have matching kx groups
353 let mut supported_kx_algos = Vec::with_capacity(ALL_KEY_EXCHANGE_ALGORITHMS.len());
354 for group in self.kx_groups.iter() {
355 let kx = group.name().key_exchange_algorithm();
356 if !supported_kx_algos.contains(&kx) {
357 supported_kx_algos.push(kx);
358 }
359 // Small optimization. We don't need to go over other key exchange groups
360 // if we already cover all supported key exchange algorithms
361 if supported_kx_algos.len() == ALL_KEY_EXCHANGE_ALGORITHMS.len() {
362 break;
363 }
364 }
365
366 for cs in self.tls12_cipher_suites.iter() {
367 if supported_kx_algos.contains(&cs.kx) {
368 continue;
369 }
370 let suite_name = cs.common.suite;
371 return Err(Error::General(alloc::format!(
372 "TLS1.2 cipher suite {suite_name:?} requires {0:?} key exchange, but no {0:?}-compatible \
373 key exchange groups were present in `CryptoProvider`'s `kx_groups` field",
374 cs.kx,
375 )));
376 }
377
378 Ok(())
379 }
380
381 pub(crate) fn iter_cipher_suites(&self) -> impl Iterator<Item = SupportedCipherSuite> + '_ {
382 self.tls13_cipher_suites
383 .iter()
384 .copied()
385 .map(SupportedCipherSuite::Tls13)
386 .chain(
387 self.tls12_cipher_suites
388 .iter()
389 .copied()
390 .map(SupportedCipherSuite::Tls12),
391 )
392 }
393
394 /// We support a given TLS version if at least one ciphersuite for the version
395 /// is available.
396 pub(crate) fn supports_version(&self, v: ProtocolVersion) -> bool {
397 match v {
398 ProtocolVersion::TLSv1_2 => !self.tls12_cipher_suites.is_empty(),
399 ProtocolVersion::TLSv1_3 => !self.tls13_cipher_suites.is_empty(),
400 _ => false,
401 }
402 }
403
404 pub(crate) fn find_kx_group(
405 &self,
406 name: NamedGroup,
407 version: ProtocolVersion,
408 ) -> Option<&'static dyn SupportedKxGroup> {
409 if !name.usable_for_version(version) {
410 return None;
411 }
412 self.kx_groups
413 .iter()
414 .find(|skxg| skxg.name() == name)
415 .copied()
416 }
417}
418
419impl Borrow<[&'static Tls12CipherSuite]> for CryptoProvider {
420 fn borrow(&self) -> &[&'static Tls12CipherSuite] {
421 &self.tls12_cipher_suites
422 }
423}
424
425impl Borrow<[&'static Tls13CipherSuite]> for CryptoProvider {
426 fn borrow(&self) -> &[&'static Tls13CipherSuite] {
427 &self.tls13_cipher_suites
428 }
429}
430
431/// A source of cryptographically secure randomness.
432pub trait SecureRandom: Send + Sync + Debug {
433 /// Fill the given buffer with random bytes.
434 ///
435 /// The bytes must be sourced from a cryptographically secure random number
436 /// generator seeded with good quality, secret entropy.
437 ///
438 /// This is used for all randomness required by rustls, but not necessarily
439 /// randomness required by the underlying cryptography library. For example:
440 /// [`SupportedKxGroup::start()`] requires random material to generate
441 /// an ephemeral key exchange key, but this is not included in the interface with
442 /// rustls: it is assumed that the cryptography library provides for this itself.
443 fn fill(&self, buf: &mut [u8]) -> Result<(), GetRandomFailed>;
444
445 /// Return `true` if this is backed by a FIPS-approved implementation.
446 fn fips(&self) -> bool {
447 false
448 }
449}
450
451/// A mechanism for loading private [`SigningKey`]s from [`PrivateKeyDer`].
452///
453/// This trait is intended to be used with private key material that is sourced from DER,
454/// such as a private-key that may be present on-disk. It is not intended to be used with
455/// keys held in hardware security modules (HSMs) or physical tokens. For these use-cases
456/// see the Rustls manual section on [customizing private key usage].
457///
458/// [customizing private key usage]: <https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#customising-private-key-usage>
459pub trait KeyProvider: Send + Sync + Debug {
460 /// Decode and validate a private signing key from `key_der`.
461 ///
462 /// This is used by [`ConfigBuilder::with_client_auth_cert()`], [`ConfigBuilder::with_single_cert()`],
463 /// and [`ConfigBuilder::with_single_cert_with_ocsp()`]. The key types and formats supported by this
464 /// function directly defines the key types and formats supported in those APIs.
465 ///
466 /// Return an error if the key type encoding is not supported, or if the key fails validation.
467 fn load_private_key(
468 &self,
469 key_der: PrivateKeyDer<'static>,
470 ) -> Result<Box<dyn SigningKey>, Error>;
471
472 /// Return `true` if this is backed by a FIPS-approved implementation.
473 ///
474 /// If this returns `true`, that must be the case for all possible key types
475 /// supported by [`KeyProvider::load_private_key()`].
476 fn fips(&self) -> bool {
477 false
478 }
479}
480
481/// A supported key exchange group.
482///
483/// This type carries both configuration and implementation. Specifically,
484/// it has a TLS-level name expressed using the [`NamedGroup`] enum, and
485/// a function which produces a [`ActiveKeyExchange`].
486///
487/// Compare with [`NamedGroup`], which carries solely a protocol identifier.
488pub trait SupportedKxGroup: Send + Sync + Debug {
489 /// Start a key exchange.
490 ///
491 /// This will prepare an ephemeral secret key in the supported group, and a corresponding
492 /// public key. The key exchange can be completed by calling [`ActiveKeyExchange::complete()`]
493 /// or discarded.
494 ///
495 /// Most implementations will want to return the `StartedKeyExchange::Single(_)` variant.
496 /// Hybrid key exchange algorithms, which are constructed from two underlying algorithms,
497 /// may wish to return `StartedKeyExchange::Hybrid(_)` variant which additionally allows
498 /// one part of the key exchange to be completed separately. See the documentation
499 /// on [`HybridKeyExchange`] for more detail.
500 ///
501 /// # Errors
502 ///
503 /// This can fail if the random source fails during ephemeral key generation.
504 fn start(&self) -> Result<StartedKeyExchange, Error>;
505
506 /// Start and complete a key exchange, in one operation.
507 ///
508 /// The default implementation for this calls `start()` and then calls
509 /// `complete()` on the result. This is suitable for Diffie-Hellman-like
510 /// key exchange algorithms, where there is not a data dependency between
511 /// our key share (named "pub_key" in this API) and the peer's (`peer_pub_key`).
512 ///
513 /// If there is such a data dependency (like key encapsulation mechanisms), this
514 /// function should be implemented.
515 fn start_and_complete(&self, peer_pub_key: &[u8]) -> Result<CompletedKeyExchange, Error> {
516 let kx = self.start()?.into_single();
517
518 Ok(CompletedKeyExchange {
519 group: kx.group(),
520 pub_key: kx.pub_key().to_vec(),
521 secret: kx.complete(peer_pub_key)?,
522 })
523 }
524
525 /// FFDHE group the `SupportedKxGroup` operates in, if any.
526 ///
527 /// The default implementation returns `None`, so non-FFDHE groups (the
528 /// most common) do not need to do anything.
529 ///
530 /// FFDHE groups must implement this. `rustls::ffdhe_groups` contains
531 /// suitable values to return, for example
532 /// [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
533 fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
534 None
535 }
536
537 /// Named group the SupportedKxGroup operates in.
538 ///
539 /// If the `NamedGroup` enum does not have a name for the algorithm you are implementing,
540 /// you can use [`NamedGroup::Unknown`].
541 fn name(&self) -> NamedGroup;
542
543 /// Return `true` if this is backed by a FIPS-approved implementation.
544 fn fips(&self) -> bool {
545 false
546 }
547}
548
549/// Return value from [`SupportedKxGroup::start()`].
550#[non_exhaustive]
551pub enum StartedKeyExchange {
552 /// A single [`ActiveKeyExchange`].
553 Single(Box<dyn ActiveKeyExchange>),
554 /// A [`HybridKeyExchange`] that can potentially be split.
555 Hybrid(Box<dyn HybridKeyExchange>),
556}
557
558impl StartedKeyExchange {
559 /// Collapses this object into its underlying [`ActiveKeyExchange`].
560 ///
561 /// This removes the ability to do the hybrid key exchange optimization,
562 /// but still allows the key exchange as a whole to be completed.
563 pub fn into_single(self) -> Box<dyn ActiveKeyExchange> {
564 match self {
565 Self::Single(s) => s,
566 Self::Hybrid(h) => h.into_key_exchange(),
567 }
568 }
569
570 /// Accesses the [`HybridKeyExchange`], and checks it was also usable separately.
571 ///
572 /// Returns:
573 ///
574 /// - the [`HybridKeyExchange`]
575 /// - the stand-alone `SupportedKxGroup` for the hybrid's component group.
576 ///
577 /// This returns `None` for:
578 ///
579 /// - non-hybrid groups,
580 /// - if the hybrid component group is not present in `supported`
581 /// - if the hybrid component group is not usable with `version`
582 pub(crate) fn as_hybrid_checked(
583 &self,
584 supported: &[&'static dyn SupportedKxGroup],
585 version: ProtocolVersion,
586 ) -> Option<(&dyn HybridKeyExchange, &'static dyn SupportedKxGroup)> {
587 let Self::Hybrid(hybrid) = self else {
588 return None;
589 };
590
591 let component_group = hybrid.component().0;
592 if !component_group.usable_for_version(version) {
593 return None;
594 }
595
596 supported
597 .iter()
598 .find(|g| g.name() == component_group)
599 .copied()
600 .map(|g| (hybrid.as_ref(), g))
601 }
602}
603
604impl Deref for StartedKeyExchange {
605 type Target = dyn ActiveKeyExchange;
606
607 fn deref(&self) -> &Self::Target {
608 match self {
609 Self::Single(s) => s.as_ref(),
610 Self::Hybrid(h) => h.as_key_exchange(),
611 }
612 }
613}
614
615/// An in-progress key exchange originating from a [`SupportedKxGroup`].
616pub trait ActiveKeyExchange: Send + Sync {
617 /// Completes the key exchange, given the peer's public key.
618 ///
619 /// This method must return an error if `peer_pub_key` is invalid: either
620 /// misencoded, or an invalid public key (such as, but not limited to, being
621 /// in a small order subgroup).
622 ///
623 /// If the key exchange algorithm is FFDHE, the result must be left-padded with zeros,
624 /// as required by [RFC 8446](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1)
625 /// (see [`complete_for_tls_version()`](Self::complete_for_tls_version) for more details).
626 ///
627 /// The shared secret is returned as a [`SharedSecret`] which can be constructed
628 /// from a `&[u8]`.
629 ///
630 /// This consumes and so terminates the [`ActiveKeyExchange`].
631 fn complete(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>;
632
633 /// Completes the key exchange for the given TLS version, given the peer's public key.
634 ///
635 /// Note that finite-field Diffie–Hellman key exchange has different requirements for the derived
636 /// shared secret in TLS 1.2 and TLS 1.3 (ECDHE key exchange is the same in TLS 1.2 and TLS 1.3):
637 ///
638 /// In TLS 1.2, the calculated secret is required to be stripped of leading zeros
639 /// [(RFC 5246)](https://www.rfc-editor.org/rfc/rfc5246#section-8.1.2).
640 ///
641 /// In TLS 1.3, the calculated secret is required to be padded with leading zeros to be the same
642 /// byte-length as the group modulus [(RFC 8446)](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1).
643 ///
644 /// The default implementation of this method delegates to [`complete()`](Self::complete) assuming it is
645 /// implemented for TLS 1.3 (i.e., for FFDHE KX, removes padding as needed). Implementers of this trait
646 /// are encouraged to just implement [`complete()`](Self::complete) assuming TLS 1.3, and let the default
647 /// implementation of this method handle TLS 1.2-specific requirements.
648 ///
649 /// This method must return an error if `peer_pub_key` is invalid: either
650 /// misencoded, or an invalid public key (such as, but not limited to, being
651 /// in a small order subgroup).
652 ///
653 /// The shared secret is returned as a [`SharedSecret`] which can be constructed
654 /// from a `&[u8]`.
655 ///
656 /// This consumes and so terminates the [`ActiveKeyExchange`].
657 fn complete_for_tls_version(
658 self: Box<Self>,
659 peer_pub_key: &[u8],
660 tls_version: ProtocolVersion,
661 ) -> Result<SharedSecret, Error> {
662 if tls_version == ProtocolVersion::TLSv1_3 {
663 return self.complete(peer_pub_key);
664 }
665
666 let group = self.group();
667 let mut complete_res = self.complete(peer_pub_key)?;
668 if group.key_exchange_algorithm() == KeyExchangeAlgorithm::DHE {
669 complete_res.strip_leading_zeros();
670 }
671 Ok(complete_res)
672 }
673
674 /// Return the public key being used.
675 ///
676 /// For ECDHE, the encoding required is defined in
677 /// [RFC8446 section 4.2.8.2](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2).
678 ///
679 /// For FFDHE, the encoding required is defined in
680 /// [RFC8446 section 4.2.8.1](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.1).
681 fn pub_key(&self) -> &[u8];
682
683 /// FFDHE group the `ActiveKeyExchange` is operating in.
684 ///
685 /// The default implementation returns `None`, so non-FFDHE groups (the
686 /// most common) do not need to do anything.
687 ///
688 /// FFDHE groups must implement this. `rustls::ffdhe_groups` contains
689 /// suitable values to return, for example
690 /// [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
691 fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
692 None
693 }
694
695 /// Return the group being used.
696 fn group(&self) -> NamedGroup;
697}
698
699/// An in-progress hybrid key exchange originating from a [`SupportedKxGroup`].
700///
701/// "Hybrid" means a key exchange algorithm which is constructed from two
702/// (or more) independent component algorithms. Usually one is post-quantum-secure,
703/// and the other is "classical". See
704/// <https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/11/>
705///
706/// There is no requirement for a hybrid scheme (or any other!) to implement
707/// `HybridKeyExchange` if it is not desirable for it to be "split" like this.
708/// It only enables an optimization; described below.
709///
710/// # Background
711/// Rustls always sends a presumptive key share in its `ClientHello`, using
712/// (absent any other information) the first item in [`CryptoProvider::kx_groups`].
713/// If the server accepts the client's selection, it can complete the handshake
714/// using that key share. If not, the server sends a `HelloRetryRequest` instructing
715/// the client to send a different key share instead.
716///
717/// This request costs an extra round trip, and wastes the key exchange computation
718/// (in [`SupportedKxGroup::start()`]) the client already did. We would
719/// like to avoid those wastes if possible.
720///
721/// It is early days for post-quantum-secure hybrid key exchange deployment.
722/// This means (commonly) continuing to offer both the hybrid and classical
723/// key exchanges, so the handshake can be completed without a `HelloRetryRequest`
724/// for servers that support the offered hybrid or classical schemes.
725///
726/// Implementing `HybridKeyExchange` enables two optimizations:
727///
728/// 1. Sending both the hybrid and classical key shares in the `ClientHello`.
729///
730/// 2. Performing the classical key exchange setup only once. This is important
731/// because the classical key exchange setup is relatively expensive.
732/// This optimization is permitted and described in
733/// <https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-11.html#section-3.2>
734///
735/// Both of these only happen if the classical algorithm appears separately in
736/// the client's [`CryptoProvider::kx_groups`], and if the hybrid algorithm appears
737/// first in that list.
738///
739/// # How it works
740/// This function is only called by rustls for clients. It is called when
741/// constructing the initial `ClientHello`. rustls follows these steps:
742///
743/// 1. If the return value is `None`, nothing further happens.
744/// 2. If the given [`NamedGroup`] does not appear in
745/// [`CryptoProvider::kx_groups`], nothing further happens.
746/// 3. The given key share is added to the `ClientHello`, after the hybrid entry.
747///
748/// Then, one of three things may happen when the server replies to the `ClientHello`:
749///
750/// 1. The server sends a `HelloRetryRequest`. Everything is thrown away and
751/// we start again.
752/// 2. The server agrees to our hybrid key exchange: rustls calls
753/// [`ActiveKeyExchange::complete()`] consuming `self`.
754/// 3. The server agrees to our classical key exchange: rustls calls
755/// [`HybridKeyExchange::complete_component()`] which
756/// discards the hybrid key data, and completes just the classical key exchange.
757pub trait HybridKeyExchange: ActiveKeyExchange {
758 /// Returns the [`NamedGroup`] and public key "share" for the component.
759 fn component(&self) -> (NamedGroup, &[u8]);
760
761 /// Completes the classical component of the key exchange, given the peer's public key.
762 ///
763 /// This method must return an error if `peer_pub_key` is invalid: either
764 /// misencoded, or an invalid public key (such as, but not limited to, being
765 /// in a small order subgroup).
766 ///
767 /// The shared secret is returned as a [`SharedSecret`] which can be constructed
768 /// from a `&[u8]`.
769 ///
770 /// See the documentation on [`HybridKeyExchange`] for explanation.
771 fn complete_component(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>;
772
773 /// Obtain the value as a `dyn ActiveKeyExchange`
774 fn as_key_exchange(&self) -> &(dyn ActiveKeyExchange + 'static);
775
776 /// Remove the ability to do hybrid key exchange on this object.
777 fn into_key_exchange(self: Box<Self>) -> Box<dyn ActiveKeyExchange>;
778}
779
780/// The result from [`SupportedKxGroup::start_and_complete()`].
781#[allow(clippy::exhaustive_structs)]
782pub struct CompletedKeyExchange {
783 /// Which group was used.
784 pub group: NamedGroup,
785
786 /// Our key share (sometimes a public key).
787 pub pub_key: Vec<u8>,
788
789 /// The computed shared secret.
790 pub secret: SharedSecret,
791}
792
793/// The result from [`ActiveKeyExchange::complete()`] or [`HybridKeyExchange::complete_component()`].
794pub struct SharedSecret {
795 buf: Vec<u8>,
796 offset: usize,
797}
798
799impl SharedSecret {
800 /// Returns the shared secret as a slice of bytes.
801 pub fn secret_bytes(&self) -> &[u8] {
802 &self.buf[self.offset..]
803 }
804
805 /// Removes leading zeros from `secret_bytes()` by adjusting the `offset`.
806 ///
807 /// This function does not re-allocate.
808 fn strip_leading_zeros(&mut self) {
809 let start = self
810 .secret_bytes()
811 .iter()
812 .enumerate()
813 .find(|(_i, x)| **x != 0)
814 .map(|(i, _x)| i)
815 .unwrap_or_else(|| self.secret_bytes().len());
816 self.offset += start;
817 }
818}
819
820impl Drop for SharedSecret {
821 fn drop(&mut self) {
822 self.buf.zeroize();
823 }
824}
825
826impl From<&[u8]> for SharedSecret {
827 fn from(source: &[u8]) -> Self {
828 Self {
829 buf: source.to_vec(),
830 offset: 0,
831 }
832 }
833}
834
835impl From<Vec<u8>> for SharedSecret {
836 fn from(buf: Vec<u8>) -> Self {
837 Self { buf, offset: 0 }
838 }
839}
840
841/// This function returns a [`CryptoProvider`] that uses
842/// FIPS140-3-approved cryptography.
843///
844/// Using this function expresses in your code that you require
845/// FIPS-approved cryptography, and will not compile if you make
846/// a mistake with cargo features.
847///
848/// See our [FIPS documentation](crate::manual::_06_fips) for
849/// more detail.
850///
851/// Install this as the process-default provider, like:
852///
853/// ```rust
854/// # #[cfg(feature = "fips")] {
855/// rustls::crypto::default_fips_provider().install_default()
856/// .expect("default provider already set elsewhere");
857/// # }
858/// ```
859///
860/// You can also use this explicitly, like:
861///
862/// ```rust
863/// # #[cfg(feature = "fips")] {
864/// # let root_store = rustls::RootCertStore::empty();
865/// let config = rustls::ClientConfig::builder_with_provider(
866/// rustls::crypto::default_fips_provider().into()
867/// )
868/// .with_root_certificates(root_store)
869/// .with_no_client_auth()
870/// .unwrap();
871/// # }
872/// ```
873#[cfg(all(feature = "aws-lc-rs", any(feature = "fips", rustls_docsrs)))]
874#[cfg_attr(rustls_docsrs, doc(cfg(feature = "fips")))]
875pub fn default_fips_provider() -> CryptoProvider {
876 aws_lc_rs::DEFAULT_PROVIDER
877}
878
879mod static_default {
880 #[cfg(not(feature = "std"))]
881 use alloc::boxed::Box;
882 #[cfg(feature = "std")]
883 use std::sync::OnceLock;
884
885 #[cfg(not(feature = "std"))]
886 use once_cell::race::OnceBox;
887
888 use super::CryptoProvider;
889 use crate::sync::Arc;
890
891 #[cfg(feature = "std")]
892 pub(crate) fn install_default(
893 default_provider: CryptoProvider,
894 ) -> Result<(), Arc<CryptoProvider>> {
895 PROCESS_DEFAULT_PROVIDER.set(Arc::new(default_provider))
896 }
897
898 #[cfg(not(feature = "std"))]
899 pub(crate) fn install_default(
900 default_provider: CryptoProvider,
901 ) -> Result<(), Arc<CryptoProvider>> {
902 PROCESS_DEFAULT_PROVIDER
903 .set(Box::new(Arc::new(default_provider)))
904 .map_err(|e| *e)
905 }
906
907 pub(crate) fn get_default() -> Option<&'static Arc<CryptoProvider>> {
908 PROCESS_DEFAULT_PROVIDER.get()
909 }
910
911 #[cfg(feature = "std")]
912 static PROCESS_DEFAULT_PROVIDER: OnceLock<Arc<CryptoProvider>> = OnceLock::new();
913 #[cfg(not(feature = "std"))]
914 static PROCESS_DEFAULT_PROVIDER: OnceBox<Arc<CryptoProvider>> = OnceBox::new();
915}
916
917#[cfg(test)]
918mod tests {
919 use std::vec;
920
921 use super::SharedSecret;
922
923 #[test]
924 fn test_shared_secret_strip_leading_zeros() {
925 let test_cases = [
926 (vec![0, 1], vec![1]),
927 (vec![1], vec![1]),
928 (vec![1, 0, 2], vec![1, 0, 2]),
929 (vec![0, 0, 1, 2], vec![1, 2]),
930 (vec![0, 0, 0], vec![]),
931 (vec![], vec![]),
932 ];
933 for (buf, expected) in test_cases {
934 let mut secret = SharedSecret::from(&buf[..]);
935 assert_eq!(secret.secret_bytes(), buf);
936 secret.strip_leading_zeros();
937 assert_eq!(secret.secret_bytes(), expected);
938 }
939 }
940}