rustls/conn/
mod.rs

1use alloc::boxed::Box;
2use core::fmt::{self, Debug};
3use core::mem;
4use core::ops::{Deref, DerefMut, Range};
5#[cfg(feature = "std")]
6use std::io;
7
8use kernel::KernelConnection;
9
10use crate::common_state::{CommonState, DEFAULT_BUFFER_LIMIT, IoState, State};
11use crate::crypto::cipher::{Decrypted, EncodedMessage};
12use crate::enums::{ContentType, ProtocolVersion};
13use crate::error::{ApiMisuse, Error, PeerMisbehaved};
14use crate::msgs::deframer::{
15    BufferProgress, DeframerIter, DeframerVecBuffer, Delocator, HandshakeDeframer, Locator,
16};
17use crate::msgs::handshake::Random;
18#[cfg(feature = "std")]
19use crate::msgs::message::Message;
20use crate::suites::ExtractedSecrets;
21use crate::vecbuf::ChunkVecBuffer;
22
23// pub so that it can be re-exported from the crate root
24pub mod kernel;
25pub(crate) mod unbuffered;
26
27#[cfg(feature = "std")]
28mod connection {
29    use alloc::vec::Vec;
30    use core::fmt::Debug;
31    use core::ops::{Deref, DerefMut};
32    use std::io::{self, BufRead, Read};
33
34    use crate::common_state::{CommonState, IoState};
35    use crate::conn::{ConnectionCommon, KeyingMaterialExporter, SideData};
36    use crate::crypto::cipher::OutboundPlain;
37    use crate::error::Error;
38    use crate::suites::ExtractedSecrets;
39    use crate::vecbuf::ChunkVecBuffer;
40
41    /// A client or server connection.
42    #[expect(clippy::exhaustive_enums)]
43    #[derive(Debug)]
44    pub enum Connection {
45        /// A client connection
46        Client(crate::client::ClientConnection),
47        /// A server connection
48        Server(crate::server::ServerConnection),
49    }
50
51    impl Connection {
52        /// Read TLS content from `rd`.
53        ///
54        /// See [`ConnectionCommon::read_tls()`] for more information.
55        pub fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error> {
56            match self {
57                Self::Client(conn) => conn.read_tls(rd),
58                Self::Server(conn) => conn.read_tls(rd),
59            }
60        }
61
62        /// Writes TLS messages to `wr`.
63        ///
64        /// See [`ConnectionCommon::write_tls()`] for more information.
65        pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
66            self.sendable_tls.write_to(wr)
67        }
68
69        /// Returns an object that allows reading plaintext.
70        pub fn reader(&mut self) -> Reader<'_> {
71            match self {
72                Self::Client(conn) => conn.reader(),
73                Self::Server(conn) => conn.reader(),
74            }
75        }
76
77        /// Returns an object that allows writing plaintext.
78        pub fn writer(&mut self) -> Writer<'_> {
79            match self {
80                Self::Client(conn) => Writer::new(&mut **conn),
81                Self::Server(conn) => Writer::new(&mut **conn),
82            }
83        }
84
85        /// Processes any new packets read by a previous call to [`Connection::read_tls`].
86        ///
87        /// See [`ConnectionCommon::process_new_packets()`] for more information.
88        pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
89            match self {
90                Self::Client(conn) => conn.process_new_packets(),
91                Self::Server(conn) => conn.process_new_packets(),
92            }
93        }
94
95        /// Returns an object that can derive key material from the agreed connection secrets.
96        ///
97        /// See [`ConnectionCommon::exporter()`] for more information.
98        pub fn exporter(&mut self) -> Result<KeyingMaterialExporter, Error> {
99            match self {
100                Self::Client(conn) => conn.exporter(),
101                Self::Server(conn) => conn.exporter(),
102            }
103        }
104
105        /// This function uses `io` to complete any outstanding IO for this connection.
106        ///
107        /// See [`ConnectionCommon::complete_io()`] for more information.
108        pub fn complete_io(
109            &mut self,
110            io: &mut (impl Read + io::Write),
111        ) -> Result<(usize, usize), io::Error> {
112            match self {
113                Self::Client(conn) => conn.complete_io(io),
114                Self::Server(conn) => conn.complete_io(io),
115            }
116        }
117
118        /// Extract secrets, so they can be used when configuring kTLS, for example.
119        /// Should be used with care as it exposes secret key material.
120        pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
121            match self {
122                Self::Client(client) => client.dangerous_extract_secrets(),
123                Self::Server(server) => server.dangerous_extract_secrets(),
124            }
125        }
126
127        /// Sets a limit on the internal buffers
128        ///
129        /// See [`ConnectionCommon::set_buffer_limit()`] for more information.
130        pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
131            match self {
132                Self::Client(client) => client.set_buffer_limit(limit),
133                Self::Server(server) => server.set_buffer_limit(limit),
134            }
135        }
136
137        /// Sets a limit on the internal plaintext buffer.
138        ///
139        /// See [`ConnectionCommon::set_plaintext_buffer_limit()`] for more information.
140        pub fn set_plaintext_buffer_limit(&mut self, limit: Option<usize>) {
141            match self {
142                Self::Client(client) => client.set_plaintext_buffer_limit(limit),
143                Self::Server(server) => server.set_plaintext_buffer_limit(limit),
144            }
145        }
146
147        /// Sends a TLS1.3 `key_update` message to refresh a connection's keys
148        ///
149        /// See [`ConnectionCommon::refresh_traffic_keys()`] for more information.
150        pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
151            match self {
152                Self::Client(client) => client.refresh_traffic_keys(),
153                Self::Server(server) => server.refresh_traffic_keys(),
154            }
155        }
156    }
157
158    impl Deref for Connection {
159        type Target = CommonState;
160
161        fn deref(&self) -> &Self::Target {
162            match self {
163                Self::Client(conn) => &conn.core.common_state,
164                Self::Server(conn) => &conn.core.common_state,
165            }
166        }
167    }
168
169    impl DerefMut for Connection {
170        fn deref_mut(&mut self) -> &mut Self::Target {
171            match self {
172                Self::Client(conn) => &mut conn.core.common_state,
173                Self::Server(conn) => &mut conn.core.common_state,
174            }
175        }
176    }
177
178    /// A structure that implements [`std::io::Read`] for reading plaintext.
179    pub struct Reader<'a> {
180        pub(super) received_plaintext: &'a mut ChunkVecBuffer,
181        pub(super) has_received_close_notify: bool,
182        pub(super) has_seen_eof: bool,
183    }
184
185    impl<'a> Reader<'a> {
186        /// Check the connection's state if no bytes are available for reading.
187        fn check_no_bytes_state(&self) -> io::Result<()> {
188            match (self.has_received_close_notify, self.has_seen_eof) {
189                // cleanly closed; don't care about TCP EOF: express this as Ok(0)
190                (true, _) => Ok(()),
191                // unclean closure
192                (false, true) => Err(io::Error::new(
193                    io::ErrorKind::UnexpectedEof,
194                    UNEXPECTED_EOF_MESSAGE,
195                )),
196                // connection still going, but needs more data: signal `WouldBlock` so that
197                // the caller knows this
198                (false, false) => Err(io::ErrorKind::WouldBlock.into()),
199            }
200        }
201
202        /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
203        ///
204        /// This method consumes `self` so that it can return a slice whose lifetime is bounded by
205        /// the [`ConnectionCommon`] that created this `Reader`.
206        pub fn into_first_chunk(self) -> io::Result<&'a [u8]> {
207            match self.received_plaintext.chunk() {
208                Some(chunk) => Ok(chunk),
209                None => {
210                    self.check_no_bytes_state()?;
211                    Ok(&[])
212                }
213            }
214        }
215    }
216
217    impl Read for Reader<'_> {
218        /// Obtain plaintext data received from the peer over this TLS connection.
219        ///
220        /// If the peer closes the TLS session cleanly, this returns `Ok(0)`  once all
221        /// the pending data has been read. No further data can be received on that
222        /// connection, so the underlying TCP connection should be half-closed too.
223        ///
224        /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
225        /// `close_notify` alert) this function returns a `std::io::Error` of type
226        /// `ErrorKind::UnexpectedEof` once any pending data has been read.
227        ///
228        /// Note that support for `close_notify` varies in peer TLS libraries: many do not
229        /// support it and uncleanly close the TCP connection (this might be
230        /// vulnerable to truncation attacks depending on the application protocol).
231        /// This means applications using rustls must both handle EOF
232        /// from this function, *and* unexpected EOF of the underlying TCP connection.
233        ///
234        /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
235        ///
236        /// You may learn the number of bytes available at any time by inspecting
237        /// the return of [`Connection::process_new_packets`].
238        fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
239            let len = self.received_plaintext.read(buf)?;
240            if len > 0 || buf.is_empty() {
241                return Ok(len);
242            }
243
244            self.check_no_bytes_state()
245                .map(|()| len)
246        }
247    }
248
249    impl BufRead for Reader<'_> {
250        /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
251        /// This reads the same data as [`Reader::read()`], but returns a reference instead of
252        /// copying the data.
253        ///
254        /// The caller should call [`Reader::consume()`] afterward to advance the buffer.
255        ///
256        /// See [`Reader::into_first_chunk()`] for a version of this function that returns a
257        /// buffer with a longer lifetime.
258        fn fill_buf(&mut self) -> io::Result<&[u8]> {
259            Reader {
260                // reborrow
261                received_plaintext: self.received_plaintext,
262                ..*self
263            }
264            .into_first_chunk()
265        }
266
267        fn consume(&mut self, amt: usize) {
268            self.received_plaintext
269                .consume_first_chunk(amt)
270        }
271    }
272
273    const UNEXPECTED_EOF_MESSAGE: &str = "peer closed connection without sending TLS close_notify: \
274https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof";
275
276    /// A structure that implements [`std::io::Write`] for writing plaintext.
277    pub struct Writer<'a> {
278        sink: &'a mut dyn PlaintextSink,
279    }
280
281    impl<'a> Writer<'a> {
282        /// Create a new Writer.
283        ///
284        /// This is not an external interface.  Get one of these objects
285        /// from [`Connection::writer`].
286        pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
287            Writer { sink }
288        }
289    }
290
291    impl io::Write for Writer<'_> {
292        /// Send the plaintext `buf` to the peer, encrypting
293        /// and authenticating it.  Once this function succeeds
294        /// you should call [`Connection::write_tls`] which will output the
295        /// corresponding TLS records.
296        ///
297        /// This function buffers plaintext sent before the
298        /// TLS handshake completes, and sends it as soon
299        /// as it can.  See [`ConnectionCommon::set_buffer_limit`] to control
300        /// the size of this buffer.
301        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
302            self.sink.write(buf)
303        }
304
305        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
306            self.sink.write_vectored(bufs)
307        }
308
309        fn flush(&mut self) -> io::Result<()> {
310            self.sink.flush()
311        }
312    }
313
314    /// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
315    /// allowing them to be the subject of a [`Writer`].
316    ///
317    /// [`ServerConnection`]: crate::ServerConnection
318    /// [`ClientConnection`]: crate::ClientConnection
319    pub(crate) trait PlaintextSink {
320        fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
321        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
322        fn flush(&mut self) -> io::Result<()>;
323    }
324
325    impl<Side: SideData> PlaintextSink for ConnectionCommon<Side> {
326        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
327            let len = self
328                .core
329                .common_state
330                .buffer_plaintext(buf.into(), &mut self.sendable_plaintext);
331            self.core.maybe_refresh_traffic_keys();
332            Ok(len)
333        }
334
335        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
336            let payload_owner: Vec<&[u8]>;
337            let payload = match bufs.len() {
338                0 => return Ok(0),
339                1 => OutboundPlain::Single(bufs[0].deref()),
340                _ => {
341                    payload_owner = bufs
342                        .iter()
343                        .map(|io_slice| io_slice.deref())
344                        .collect();
345
346                    OutboundPlain::new(&payload_owner)
347                }
348            };
349            let len = self
350                .core
351                .common_state
352                .buffer_plaintext(payload, &mut self.sendable_plaintext);
353            self.core.maybe_refresh_traffic_keys();
354            Ok(len)
355        }
356
357        fn flush(&mut self) -> io::Result<()> {
358            Ok(())
359        }
360    }
361}
362
363#[cfg(feature = "std")]
364pub use connection::{Connection, Reader, Writer};
365
366/// An object of this type can export keying material.
367pub struct KeyingMaterialExporter {
368    pub(crate) inner: Box<dyn Exporter>,
369}
370
371impl KeyingMaterialExporter {
372    /// Derives key material from the agreed connection secrets.
373    ///
374    /// This function fills in `output` with `output.len()` bytes of key
375    /// material derived from a master connection secret using `label`
376    /// and `context` for diversification. Ownership of the buffer is taken
377    /// by the function and returned via the Ok result to ensure no key
378    /// material leaks if the function fails.
379    ///
380    /// See [RFC5705][] for more details on what this does and is for.  In
381    /// other libraries this is often named `SSL_export_keying_material()`
382    /// or `SslExportKeyingMaterial()`.
383    ///
384    /// This function is not meaningful if `output.len()` is zero and will
385    /// return an error in that case.
386    ///
387    /// [RFC5705]: https://datatracker.ietf.org/doc/html/rfc5705
388    pub fn derive<T: AsMut<[u8]>>(
389        &self,
390        label: &[u8],
391        context: Option<&[u8]>,
392        mut output: T,
393    ) -> Result<T, Error> {
394        if output.as_mut().is_empty() {
395            return Err(ApiMisuse::ExporterOutputZeroLength.into());
396        }
397
398        self.inner
399            .derive(label, context, output.as_mut())
400            .map(|_| output)
401    }
402}
403
404impl Debug for KeyingMaterialExporter {
405    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
406        f.debug_struct("KeyingMaterialExporter")
407            .finish_non_exhaustive()
408    }
409}
410
411/// This trait is for any object that can export keying material.
412///
413/// The terminology comes from [RFC5705](https://datatracker.ietf.org/doc/html/rfc5705)
414/// but doesn't really involve "exporting" key material (in the usual meaning of "export"
415/// -- of moving an artifact from one domain to another) but is best thought of as key
416/// diversification using an existing secret.  That secret is implicit in this interface,
417/// so is assumed to be held by `self`. The secret should be zeroized in `drop()`.
418///
419/// There are several such internal implementations, depending on the context
420/// and protocol version.
421pub(crate) trait Exporter: Send + Sync {
422    /// Fills in `output` with derived keying material.
423    ///
424    /// This is deterministic depending on a base secret (implicit in `self`),
425    /// plus the `label` and `context` values.
426    ///
427    /// Must fill in `output` entirely, or return an error.
428    fn derive(&self, label: &[u8], context: Option<&[u8]>, output: &mut [u8]) -> Result<(), Error>;
429}
430
431#[derive(Debug)]
432pub(crate) struct ConnectionRandoms {
433    pub(crate) client: [u8; 32],
434    pub(crate) server: [u8; 32],
435}
436
437impl ConnectionRandoms {
438    pub(crate) fn new(client: Random, server: Random) -> Self {
439        Self {
440            client: client.0,
441            server: server.0,
442        }
443    }
444}
445
446/// TLS connection state with side-specific data (`Side`).
447///
448/// This is one of the core abstractions of the rustls API. It represents a single connection
449/// to a peer, and holds all the state associated with that connection. Note that it does
450/// not hold any IO objects: the application is responsible for reading and writing TLS records.
451/// If you want an object that does hold IO objects, see [`Stream`] and [`StreamOwned`].
452///
453/// This object is generic over the `Side` type parameter, which must implement the marker trait
454/// [`SideData`]. This is used to store side-specific data.
455///
456/// [`Stream`]: crate::Stream
457/// [`StreamOwned`]: crate::StreamOwned
458pub struct ConnectionCommon<Side: SideData> {
459    pub(crate) core: ConnectionCore<Side>,
460    deframer_buffer: DeframerVecBuffer,
461    pub(crate) sendable_plaintext: ChunkVecBuffer,
462}
463
464impl<Side: SideData> ConnectionCommon<Side> {
465    /// Processes any new packets read by a previous call to
466    /// [`Connection::read_tls`].
467    ///
468    /// Errors from this function relate to TLS protocol errors, and
469    /// are fatal to the connection.  Future calls after an error will do
470    /// no new work and will return the same error. After an error is
471    /// received from [`process_new_packets`], you should not call [`read_tls`]
472    /// any more (it will fill up buffers to no purpose). However, you
473    /// may call the other methods on the connection, including `write`,
474    /// `send_close_notify`, and `write_tls`. Most likely you will want to
475    /// call `write_tls` to send any alerts queued by the error and then
476    /// close the underlying connection.
477    ///
478    /// Success from this function comes with some sundry state data
479    /// about the connection.
480    ///
481    /// [`read_tls`]: Connection::read_tls
482    /// [`process_new_packets`]: Connection::process_new_packets
483    #[inline]
484    pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
485        self.core
486            .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)
487    }
488
489    /// Returns an object that can derive key material from the agreed connection secrets.
490    ///
491    /// See [RFC5705][] for more details on what this is for.
492    ///
493    /// This function can be called at most once per connection.
494    ///
495    /// This function will error:
496    ///
497    /// - if called prior to the handshake completing; (check with
498    ///   [`CommonState::is_handshaking`] first).
499    /// - if called more than once per connection.
500    ///
501    /// [RFC5705]: https://datatracker.ietf.org/doc/html/rfc5705
502    pub fn exporter(&mut self) -> Result<KeyingMaterialExporter, Error> {
503        self.core.exporter()
504    }
505
506    /// Extract secrets, so they can be used when configuring kTLS, for example.
507    /// Should be used with care as it exposes secret key material.
508    pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
509        self.core.dangerous_extract_secrets()
510    }
511
512    /// Sets a limit on the internal buffers used to buffer
513    /// unsent plaintext (prior to completing the TLS handshake)
514    /// and unsent TLS records.  This limit acts only on application
515    /// data written through [`Connection::writer`].
516    ///
517    /// By default the limit is 64KB.  The limit can be set
518    /// at any time, even if the current buffer use is higher.
519    ///
520    /// [`None`] means no limit applies, and will mean that written
521    /// data is buffered without bound -- it is up to the application
522    /// to appropriately schedule its plaintext and TLS writes to bound
523    /// memory usage.
524    ///
525    /// For illustration: `Some(1)` means a limit of one byte applies:
526    /// [`Connection::writer`] will accept only one byte, encrypt it and
527    /// add a TLS header.  Once this is sent via [`Connection::write_tls`],
528    /// another byte may be sent.
529    ///
530    /// # Internal write-direction buffering
531    /// rustls has two buffers whose size are bounded by this setting:
532    ///
533    /// ## Buffering of unsent plaintext data prior to handshake completion
534    ///
535    /// Calls to [`Connection::writer`] before or during the handshake
536    /// are buffered (up to the limit specified here).  Once the
537    /// handshake completes this data is encrypted and the resulting
538    /// TLS records are added to the outgoing buffer.
539    ///
540    /// ## Buffering of outgoing TLS records
541    ///
542    /// This buffer is used to store TLS records that rustls needs to
543    /// send to the peer.  It is used in these two circumstances:
544    ///
545    /// - by [`Connection::process_new_packets`] when a handshake or alert
546    ///   TLS record needs to be sent.
547    /// - by [`Connection::writer`] post-handshake: the plaintext is
548    ///   encrypted and the resulting TLS record is buffered.
549    ///
550    /// This buffer is emptied by [`Connection::write_tls`].
551    ///
552    /// [`Connection::writer`]: crate::Connection::writer
553    /// [`Connection::write_tls`]: crate::Connection::write_tls
554    /// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
555    pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
556        self.sendable_plaintext.set_limit(limit);
557        self.sendable_tls.set_limit(limit);
558    }
559
560    /// Sets a limit on the internal buffers used to buffer decoded plaintext.
561    ///
562    /// See [`Self::set_buffer_limit`] for more information on how limits are applied.
563    pub fn set_plaintext_buffer_limit(&mut self, limit: Option<usize>) {
564        self.core
565            .common_state
566            .received_plaintext
567            .set_limit(limit);
568    }
569
570    /// Sends a TLS1.3 `key_update` message to refresh a connection's keys.
571    ///
572    /// This call refreshes our encryption keys. Once the peer receives the message,
573    /// it refreshes _its_ encryption and decryption keys and sends a response.
574    /// Once we receive that response, we refresh our decryption keys to match.
575    /// At the end of this process, keys in both directions have been refreshed.
576    ///
577    /// Note that this process does not happen synchronously: this call just
578    /// arranges that the `key_update` message will be included in the next
579    /// `write_tls` output.
580    ///
581    /// This fails with `Error::HandshakeNotComplete` if called before the initial
582    /// handshake is complete, or if a version prior to TLS1.3 is negotiated.
583    ///
584    /// # Usage advice
585    /// Note that other implementations (including rustls) may enforce limits on
586    /// the number of `key_update` messages allowed on a given connection to prevent
587    /// denial of service.  Therefore, this should be called sparingly.
588    ///
589    /// rustls implicitly and automatically refreshes traffic keys when needed
590    /// according to the selected cipher suite's cryptographic constraints.  There
591    /// is therefore no need to call this manually to avoid cryptographic keys
592    /// "wearing out".
593    ///
594    /// The main reason to call this manually is to roll keys when it is known
595    /// a connection will be idle for a long period.
596    pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
597        self.core.refresh_traffic_keys()
598    }
599}
600
601#[cfg(feature = "std")]
602impl<Side: SideData> ConnectionCommon<Side> {
603    /// Returns an object that allows reading plaintext.
604    pub fn reader(&mut self) -> Reader<'_> {
605        let common = &mut self.core.common_state;
606        Reader {
607            received_plaintext: &mut common.received_plaintext,
608            // Are we done? i.e., have we processed all received messages, and received a
609            // close_notify to indicate that no new messages will arrive?
610            has_received_close_notify: common.has_received_close_notify,
611            has_seen_eof: common.has_seen_eof,
612        }
613    }
614
615    /// Returns an object that allows writing plaintext.
616    pub fn writer(&mut self) -> Writer<'_> {
617        Writer::new(self)
618    }
619
620    /// This function uses `io` to complete any outstanding IO for
621    /// this connection.
622    ///
623    /// This is a convenience function which solely uses other parts
624    /// of the public API.
625    ///
626    /// What this means depends on the connection  state:
627    ///
628    /// - If the connection [`is_handshaking`], then IO is performed until
629    ///   the handshake is complete.
630    /// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
631    ///   until it is all written.
632    /// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
633    ///   once.
634    ///
635    /// The return value is the number of bytes read from and written
636    /// to `io`, respectively. Once both `read()` and `write()` yield `WouldBlock`,
637    /// this function will propagate the error.
638    ///
639    /// Errors from TLS record handling (i.e., from [`process_new_packets`])
640    /// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
641    ///
642    /// [`is_handshaking`]: CommonState::is_handshaking
643    /// [`wants_read`]: CommonState::wants_read
644    /// [`wants_write`]: CommonState::wants_write
645    /// [`write_tls`]: ConnectionCommon::write_tls
646    /// [`read_tls`]: ConnectionCommon::read_tls
647    /// [`process_new_packets`]: ConnectionCommon::process_new_packets
648    pub fn complete_io(
649        &mut self,
650        io: &mut (impl io::Read + io::Write),
651    ) -> Result<(usize, usize), io::Error> {
652        let mut eof = false;
653        let mut wrlen = 0;
654        let mut rdlen = 0;
655        loop {
656            let (mut blocked_write, mut blocked_read) = (None, None);
657            let until_handshaked = self.is_handshaking();
658
659            if !self.wants_write() && !self.wants_read() {
660                // We will make no further progress.
661                return Ok((rdlen, wrlen));
662            }
663
664            while self.wants_write() {
665                match self.write_tls(io) {
666                    Ok(0) => {
667                        io.flush()?;
668                        return Ok((rdlen, wrlen)); // EOF.
669                    }
670                    Ok(n) => wrlen += n,
671                    Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
672                        blocked_write = Some(err);
673                        break;
674                    }
675                    Err(err) => return Err(err),
676                }
677            }
678            if wrlen > 0 {
679                io.flush()?;
680            }
681
682            if !until_handshaked && wrlen > 0 {
683                return Ok((rdlen, wrlen));
684            }
685
686            // If we want to write, but are WouldBlocked by the underlying IO, *and*
687            // have no desire to read; that is everything.
688            if let (Some(_), false) = (&blocked_write, self.wants_read()) {
689                return match wrlen {
690                    0 => Err(blocked_write.unwrap()),
691                    _ => Ok((rdlen, wrlen)),
692                };
693            }
694
695            while !eof && self.wants_read() {
696                let read_size = match self.read_tls(io) {
697                    Ok(0) => {
698                        eof = true;
699                        Some(0)
700                    }
701                    Ok(n) => {
702                        rdlen += n;
703                        Some(n)
704                    }
705                    Err(err) if err.kind() == io::ErrorKind::WouldBlock => {
706                        blocked_read = Some(err);
707                        break;
708                    }
709                    Err(err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
710                    Err(err) => return Err(err),
711                };
712                if read_size.is_some() {
713                    break;
714                }
715            }
716
717            if let Err(e) = self.process_new_packets() {
718                // In case we have an alert to send describing this error, try a last-gasp
719                // write -- but don't predate the primary error.
720                let _ignored = self.write_tls(io);
721                let _ignored = io.flush();
722                return Err(io::Error::new(io::ErrorKind::InvalidData, e));
723            };
724
725            // If we want to read, but are WouldBlocked by the underlying IO, *and*
726            // have no desire to write; that is everything.
727            if let (Some(_), false) = (&blocked_read, self.wants_write()) {
728                return match rdlen {
729                    0 => Err(blocked_read.unwrap()),
730                    _ => Ok((rdlen, wrlen)),
731                };
732            }
733
734            // if we're doing IO until handshaked, and we believe we've finished handshaking,
735            // but process_new_packets() has queued TLS data to send, loop around again to write
736            // the queued messages.
737            if until_handshaked && !self.is_handshaking() && self.wants_write() {
738                continue;
739            }
740
741            let blocked = blocked_write.zip(blocked_read);
742            match (eof, until_handshaked, self.is_handshaking(), blocked) {
743                (_, true, false, _) => return Ok((rdlen, wrlen)),
744                (_, _, _, Some((e, _))) if rdlen == 0 && wrlen == 0 => return Err(e),
745                (_, false, _, _) => return Ok((rdlen, wrlen)),
746                (true, true, true, _) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
747                _ => {}
748            }
749        }
750    }
751
752    /// Extract the first handshake message.
753    ///
754    /// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
755    /// `process_handshake_messages()` path, specialized for the first handshake message.
756    pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> {
757        let mut buffer_progress = self.core.hs_deframer.progress();
758
759        let res = self
760            .core
761            .deframe(self.deframer_buffer.filled_mut(), &mut buffer_progress)
762            .map(|opt| opt.map(|pm| Message::try_from(&pm).map(|m| m.into_owned())));
763
764        match res? {
765            Some(Ok(msg)) => {
766                self.deframer_buffer
767                    .discard(buffer_progress.take_discard());
768                self.core.common_state.aligned_handshake = self.core.hs_deframer.aligned();
769                Ok(Some(msg))
770            }
771            Some(Err(err)) => Err(err.into()),
772            None => Ok(None),
773        }
774    }
775
776    pub(crate) fn replace_state(&mut self, new: Box<dyn State<Side>>) {
777        self.core.state = Ok(new);
778    }
779
780    /// Read TLS content from `rd` into the internal buffer.
781    ///
782    /// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
783    /// a socket or pipe might).
784    ///
785    /// You should call [`process_new_packets()`] each time a call to this function succeeds in order
786    /// to empty the incoming TLS data buffer.
787    ///
788    /// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
789    /// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
790    /// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
791    ///
792    /// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
793    ///   each time a call to this function succeeds.
794    /// * In order to empty the incoming plaintext data buffer, you should empty it through
795    ///   the [`reader()`] after the call to [`process_new_packets()`].
796    ///
797    /// This function also returns `Ok(0)` once a `close_notify` alert has been successfully
798    /// received.  No additional data is ever read in this state.
799    ///
800    /// [`process_new_packets()`]: ConnectionCommon::process_new_packets
801    /// [`reader()`]: ConnectionCommon::reader
802    pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
803        if self.received_plaintext.is_full() {
804            return Err(io::Error::other("received plaintext buffer full"));
805        }
806
807        if self.has_received_close_notify {
808            return Ok(0);
809        }
810
811        let res = self
812            .deframer_buffer
813            .read(rd, self.core.hs_deframer.is_active());
814        if let Ok(0) = res {
815            self.has_seen_eof = true;
816        }
817        res
818    }
819
820    /// Writes TLS messages to `wr`.
821    ///
822    /// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
823    /// (after encoding and encryption).
824    ///
825    /// After this function returns, the connection buffer may not yet be fully flushed. The
826    /// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
827    pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
828        self.sendable_tls.write_to(wr)
829    }
830}
831
832impl<Side: SideData> Deref for ConnectionCommon<Side> {
833    type Target = CommonState;
834
835    fn deref(&self) -> &Self::Target {
836        &self.core.common_state
837    }
838}
839
840impl<Side: SideData> DerefMut for ConnectionCommon<Side> {
841    fn deref_mut(&mut self) -> &mut Self::Target {
842        &mut self.core.common_state
843    }
844}
845
846impl<Side: SideData> From<ConnectionCore<Side>> for ConnectionCommon<Side> {
847    fn from(core: ConnectionCore<Side>) -> Self {
848        Self {
849            core,
850            deframer_buffer: DeframerVecBuffer::default(),
851            sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
852        }
853    }
854}
855
856/// Interface shared by unbuffered client and server connections.
857pub struct UnbufferedConnectionCommon<Side: SideData> {
858    pub(crate) core: ConnectionCore<Side>,
859    wants_write: bool,
860    emitted_peer_closed_state: bool,
861}
862
863impl<Side: SideData> From<ConnectionCore<Side>> for UnbufferedConnectionCommon<Side> {
864    fn from(core: ConnectionCore<Side>) -> Self {
865        Self {
866            core,
867            wants_write: false,
868            emitted_peer_closed_state: false,
869        }
870    }
871}
872
873impl<Side: SideData> UnbufferedConnectionCommon<Side> {
874    /// Extract secrets, so they can be used when configuring kTLS, for example.
875    /// Should be used with care as it exposes secret key material.
876    pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
877        self.core.dangerous_extract_secrets()
878    }
879}
880
881impl<Side: SideData> Deref for UnbufferedConnectionCommon<Side> {
882    type Target = CommonState;
883
884    fn deref(&self) -> &Self::Target {
885        &self.core.common_state
886    }
887}
888
889pub(crate) struct ConnectionCore<Side: SideData> {
890    pub(crate) state: Result<Box<dyn State<Side>>, Error>,
891    pub(crate) side: Side,
892    pub(crate) common_state: CommonState,
893    pub(crate) hs_deframer: HandshakeDeframer,
894
895    /// We limit consecutive empty fragments to avoid a route for the peer to send
896    /// us significant but fruitless traffic.
897    seen_consecutive_empty_fragments: u8,
898}
899
900impl<Side: SideData> ConnectionCore<Side> {
901    pub(crate) fn new(state: Box<dyn State<Side>>, side: Side, common_state: CommonState) -> Self {
902        Self {
903            state: Ok(state),
904            side,
905            common_state,
906            hs_deframer: HandshakeDeframer::default(),
907            seen_consecutive_empty_fragments: 0,
908        }
909    }
910
911    pub(crate) fn process_new_packets(
912        &mut self,
913        deframer_buffer: &mut DeframerVecBuffer,
914        sendable_plaintext: &mut ChunkVecBuffer,
915    ) -> Result<IoState, Error> {
916        let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
917            Ok(state) => state,
918            Err(e) => {
919                self.state = Err(e.clone());
920                return Err(e);
921            }
922        };
923
924        // Should `EncodedMessage<Payload>` resolve to plaintext application
925        // data it will be allocated within `plaintext` and written to
926        // `CommonState.received_plaintext` buffer.
927        //
928        // TODO `CommonState.received_plaintext` should be hoisted into
929        // `ConnectionCommon`
930        let mut plaintext = None;
931        let mut buffer_progress = self.hs_deframer.progress();
932
933        loop {
934            let buffer = deframer_buffer.filled_mut();
935            let locator = Locator::new(buffer);
936            let res = self.deframe(buffer, &mut buffer_progress);
937
938            let opt_msg = match res {
939                Ok(opt_msg) => opt_msg,
940                Err(e) => {
941                    self.common_state
942                        .maybe_send_fatal_alert(&e);
943                    if let Error::DecryptError = e {
944                        state.handle_decrypt_error();
945                    }
946                    self.state = Err(e.clone());
947                    deframer_buffer.discard(buffer_progress.take_discard());
948                    return Err(e);
949                }
950            };
951
952            let Some(msg) = opt_msg else {
953                break;
954            };
955
956            match self.common_state.process_main_protocol(
957                msg,
958                state,
959                &mut self.side,
960                &locator,
961                &mut plaintext,
962                Some(sendable_plaintext),
963            ) {
964                Ok(new) => state = new,
965                Err(e) => {
966                    self.common_state
967                        .maybe_send_fatal_alert(&e);
968                    self.state = Err(e.clone());
969                    deframer_buffer.discard(buffer_progress.take_discard());
970                    return Err(e);
971                }
972            }
973
974            if self
975                .common_state
976                .has_received_close_notify
977            {
978                // "Any data received after a closure alert has been received MUST be ignored."
979                // -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1>
980                // This is data that has already been accepted in `read_tls`.
981                buffer_progress.add_discard(deframer_buffer.filled().len());
982                break;
983            }
984
985            if let Some(payload) = plaintext.take() {
986                let payload = payload.reborrow(&Delocator::new(buffer));
987                self.common_state
988                    .received_plaintext
989                    .append(payload.into_vec());
990            }
991
992            deframer_buffer.discard(buffer_progress.take_discard());
993        }
994
995        deframer_buffer.discard(buffer_progress.take_discard());
996        self.state = Ok(state);
997        Ok(self.common_state.current_io_state())
998    }
999
1000    /// Pull a message out of the deframer and send any messages that need to be sent as a result.
1001    fn deframe<'b>(
1002        &mut self,
1003        buffer: &'b mut [u8],
1004        buffer_progress: &mut BufferProgress,
1005    ) -> Result<Option<EncodedMessage<&'b [u8]>>, Error> {
1006        // before processing any more of `buffer`, return any extant messages from `hs_deframer`
1007        if self.hs_deframer.has_message_ready() {
1008            Ok(self.take_handshake_message(buffer, buffer_progress))
1009        } else {
1010            self.process_more_input(buffer, buffer_progress)
1011        }
1012    }
1013
1014    fn take_handshake_message<'b>(
1015        &mut self,
1016        buffer: &'b mut [u8],
1017        buffer_progress: &mut BufferProgress,
1018    ) -> Option<EncodedMessage<&'b [u8]>> {
1019        self.hs_deframer
1020            .iter(buffer)
1021            .next()
1022            .map(|(message, discard)| {
1023                buffer_progress.add_discard(discard);
1024                message
1025            })
1026    }
1027
1028    fn process_more_input<'b>(
1029        &mut self,
1030        buffer: &'b mut [u8],
1031        buffer_progress: &mut BufferProgress,
1032    ) -> Result<Option<EncodedMessage<&'b [u8]>>, Error> {
1033        let version_is_tls13 = matches!(
1034            self.common_state.negotiated_version,
1035            Some(ProtocolVersion::TLSv1_3)
1036        );
1037
1038        let locator = Locator::new(buffer);
1039
1040        loop {
1041            let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]);
1042
1043            let (message, processed) = loop {
1044                let message = match iter.next().transpose() {
1045                    Ok(Some(message)) => message,
1046                    Ok(None) => return Ok(None),
1047                    Err(err) => return Err(err),
1048                };
1049
1050                let allowed_plaintext = match message.typ {
1051                    // CCS messages are always plaintext.
1052                    ContentType::ChangeCipherSpec => true,
1053                    // Alerts are allowed to be plaintext if-and-only-if:
1054                    // * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
1055                    //   keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
1056                    // * We have not yet decrypted any messages from the peer - if we have we don't
1057                    //   expect any plaintext.
1058                    // * The payload size is indicative of a plaintext alert message.
1059                    ContentType::Alert
1060                        if version_is_tls13
1061                            && !self
1062                                .common_state
1063                                .record_layer
1064                                .has_decrypted()
1065                            && message.payload.len() <= 2 =>
1066                    {
1067                        true
1068                    }
1069                    // In other circumstances, we expect all messages to be encrypted.
1070                    _ => false,
1071                };
1072
1073                if allowed_plaintext && !self.hs_deframer.is_active() {
1074                    break (message.into_plain_message(), iter.bytes_consumed());
1075                }
1076
1077                let message = match self
1078                    .common_state
1079                    .record_layer
1080                    .decrypt_incoming(message)
1081                {
1082                    // failed decryption during trial decryption is not allowed to be
1083                    // interleaved with partial handshake data.
1084                    Ok(None) if self.hs_deframer.aligned().is_none() => {
1085                        return Err(
1086                            PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(),
1087                        );
1088                    }
1089
1090                    // failed decryption during trial decryption.
1091                    Ok(None) => continue,
1092
1093                    Ok(Some(message)) => message,
1094
1095                    Err(err) => return Err(err),
1096                };
1097
1098                let Decrypted {
1099                    want_close_before_decrypt,
1100                    plaintext,
1101                } = message;
1102
1103                if want_close_before_decrypt {
1104                    self.common_state.send_close_notify();
1105                }
1106
1107                break (plaintext, iter.bytes_consumed());
1108            };
1109
1110            if self.hs_deframer.aligned().is_none() && message.typ != ContentType::Handshake {
1111                // "Handshake messages MUST NOT be interleaved with other record
1112                // types.  That is, if a handshake message is split over two or more
1113                // records, there MUST NOT be any other records between them."
1114                // https://www.rfc-editor.org/rfc/rfc8446#section-5.1
1115                return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into());
1116            }
1117
1118            match message.payload.len() {
1119                0 => {
1120                    if self.seen_consecutive_empty_fragments
1121                        == ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX
1122                    {
1123                        return Err(PeerMisbehaved::TooManyEmptyFragments.into());
1124                    }
1125                    self.seen_consecutive_empty_fragments += 1;
1126                }
1127                _ => {
1128                    self.seen_consecutive_empty_fragments = 0;
1129                }
1130            };
1131
1132            buffer_progress.add_processed(processed);
1133
1134            // do an end-run around the borrow checker, converting `message` (containing
1135            // a borrowed slice) to an unborrowed one (containing a `Range` into the
1136            // same buffer).  the reborrow happens inside the branch that returns the
1137            // message.
1138            //
1139            // is fixed by -Zpolonius
1140            // https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions
1141            let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message);
1142
1143            if unborrowed.typ != ContentType::Handshake {
1144                let message = unborrowed.reborrow(&Delocator::new(buffer));
1145                buffer_progress.add_discard(processed);
1146                return Ok(Some(message));
1147            }
1148
1149            let message = unborrowed.reborrow(&Delocator::new(buffer));
1150            self.hs_deframer
1151                .input_message(message, &locator, buffer_progress.processed());
1152            self.hs_deframer.coalesce(buffer)?;
1153
1154            self.common_state.aligned_handshake = self.hs_deframer.aligned();
1155
1156            if self.hs_deframer.has_message_ready() {
1157                // trial decryption finishes with the first handshake message after it started.
1158                self.common_state
1159                    .record_layer
1160                    .finish_trial_decryption();
1161
1162                return Ok(self.take_handshake_message(buffer, buffer_progress));
1163            }
1164        }
1165    }
1166
1167    pub(crate) fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
1168        Ok(self
1169            .dangerous_into_kernel_connection()?
1170            .0)
1171    }
1172
1173    pub(crate) fn dangerous_into_kernel_connection(
1174        self,
1175    ) -> Result<(ExtractedSecrets, KernelConnection<Side>), Error> {
1176        if !self
1177            .common_state
1178            .enable_secret_extraction
1179        {
1180            return Err(ApiMisuse::SecretExtractionRequiresPriorOptIn.into());
1181        }
1182
1183        if self.common_state.is_handshaking() {
1184            return Err(Error::HandshakeNotComplete);
1185        }
1186
1187        if !self
1188            .common_state
1189            .sendable_tls
1190            .is_empty()
1191        {
1192            return Err(ApiMisuse::SecretExtractionWithPendingSendableData.into());
1193        }
1194
1195        let state = self.state?;
1196
1197        let record_layer = &self.common_state.record_layer;
1198
1199        let (secrets, state) = state.into_external_state()?;
1200        let secrets = ExtractedSecrets {
1201            tx: (record_layer.write_seq(), secrets.tx),
1202            rx: (record_layer.read_seq(), secrets.rx),
1203        };
1204        let external = KernelConnection::new(state, self.common_state)?;
1205
1206        Ok((secrets, external))
1207    }
1208
1209    pub(crate) fn exporter(&mut self) -> Result<KeyingMaterialExporter, Error> {
1210        match self.common_state.exporter.take() {
1211            Some(inner) => Ok(KeyingMaterialExporter { inner }),
1212            None if self.common_state.is_handshaking() => Err(Error::HandshakeNotComplete),
1213            None => Err(ApiMisuse::ExporterAlreadyUsed.into()),
1214        }
1215    }
1216
1217    #[cfg(feature = "std")]
1218    pub(crate) fn early_exporter(&mut self) -> Result<KeyingMaterialExporter, Error> {
1219        match self.common_state.early_exporter.take() {
1220            Some(inner) => Ok(KeyingMaterialExporter { inner }),
1221            None => Err(ApiMisuse::ExporterAlreadyUsed.into()),
1222        }
1223    }
1224
1225    /// Trigger a `refresh_traffic_keys` if required by `CommonState`.
1226    fn maybe_refresh_traffic_keys(&mut self) {
1227        if mem::take(
1228            &mut self
1229                .common_state
1230                .refresh_traffic_keys_pending,
1231        ) {
1232            let _ = self.refresh_traffic_keys();
1233        }
1234    }
1235
1236    fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
1237        match &mut self.state {
1238            Ok(st) => st.send_key_update_request(&mut self.common_state),
1239            Err(e) => Err(e.clone()),
1240        }
1241    }
1242}
1243
1244/// Data specific to the peer's side (client or server).
1245pub trait SideData: Debug {}
1246
1247/// An [`EncodedMessage<Payload<'_>>`] which does not borrow its payload, but
1248/// references a range that can later be borrowed.
1249struct InboundUnborrowedMessage {
1250    typ: ContentType,
1251    version: ProtocolVersion,
1252    bounds: Range<usize>,
1253}
1254
1255impl InboundUnborrowedMessage {
1256    fn unborrow(locator: &Locator, msg: EncodedMessage<&'_ [u8]>) -> Self {
1257        Self {
1258            typ: msg.typ,
1259            version: msg.version,
1260            bounds: locator.locate(msg.payload),
1261        }
1262    }
1263
1264    fn reborrow<'b>(self, delocator: &Delocator<'b>) -> EncodedMessage<&'b [u8]> {
1265        EncodedMessage {
1266            typ: self.typ,
1267            version: self.version,
1268            payload: delocator.slice_from_range(&self.bounds),
1269        }
1270    }
1271}
1272
1273/// cf. BoringSSL's `kMaxEmptyRecords`
1274/// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128>
1275const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32;