rustls/conn.rs
1use alloc::boxed::Box;
2use core::fmt::Debug;
3use core::mem;
4use core::ops::{Deref, DerefMut, Range};
5#[cfg(feature = "std")]
6use std::io;
7
8use kernel::KernelConnection;
9
10use crate::common_state::{CommonState, Context, DEFAULT_BUFFER_LIMIT, IoState, State};
11use crate::enums::{AlertDescription, ContentType, ProtocolVersion};
12use crate::error::{Error, PeerMisbehaved};
13use crate::log::trace;
14use crate::msgs::deframer::DeframerIter;
15use crate::msgs::deframer::buffers::{BufferProgress, DeframerVecBuffer, Delocator, Locator};
16use crate::msgs::deframer::handshake::HandshakeDeframer;
17use crate::msgs::handshake::Random;
18use crate::msgs::message::{InboundPlainMessage, Message, MessagePayload};
19use crate::record_layer::Decrypted;
20use crate::suites::ExtractedSecrets;
21use crate::vecbuf::ChunkVecBuffer;
22
23// pub so that it can be re-exported from the crate root
24pub mod kernel;
25pub(crate) mod unbuffered;
26
27#[cfg(feature = "std")]
28mod connection {
29 use alloc::vec::Vec;
30 use core::fmt::Debug;
31 use core::ops::{Deref, DerefMut};
32 use std::io::{self, BufRead, Read};
33
34 use crate::ConnectionCommon;
35 use crate::common_state::{CommonState, IoState};
36 use crate::error::Error;
37 use crate::msgs::message::OutboundChunks;
38 use crate::suites::ExtractedSecrets;
39 use crate::vecbuf::ChunkVecBuffer;
40
41 /// A client or server connection.
42 #[derive(Debug)]
43 pub enum Connection {
44 /// A client connection
45 Client(crate::client::ClientConnection),
46 /// A server connection
47 Server(crate::server::ServerConnection),
48 }
49
50 impl Connection {
51 /// Read TLS content from `rd`.
52 ///
53 /// See [`ConnectionCommon::read_tls()`] for more information.
54 pub fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error> {
55 match self {
56 Self::Client(conn) => conn.read_tls(rd),
57 Self::Server(conn) => conn.read_tls(rd),
58 }
59 }
60
61 /// Writes TLS messages to `wr`.
62 ///
63 /// See [`ConnectionCommon::write_tls()`] for more information.
64 pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
65 self.sendable_tls.write_to(wr)
66 }
67
68 /// Returns an object that allows reading plaintext.
69 pub fn reader(&mut self) -> Reader<'_> {
70 match self {
71 Self::Client(conn) => conn.reader(),
72 Self::Server(conn) => conn.reader(),
73 }
74 }
75
76 /// Returns an object that allows writing plaintext.
77 pub fn writer(&mut self) -> Writer<'_> {
78 match self {
79 Self::Client(conn) => Writer::new(&mut **conn),
80 Self::Server(conn) => Writer::new(&mut **conn),
81 }
82 }
83
84 /// Processes any new packets read by a previous call to [`Connection::read_tls`].
85 ///
86 /// See [`ConnectionCommon::process_new_packets()`] for more information.
87 pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
88 match self {
89 Self::Client(conn) => conn.process_new_packets(),
90 Self::Server(conn) => conn.process_new_packets(),
91 }
92 }
93
94 /// Derives key material from the agreed connection secrets.
95 ///
96 /// See [`ConnectionCommon::export_keying_material()`] for more information.
97 pub fn export_keying_material<T: AsMut<[u8]>>(
98 &self,
99 output: T,
100 label: &[u8],
101 context: Option<&[u8]>,
102 ) -> Result<T, Error> {
103 match self {
104 Self::Client(conn) => conn.export_keying_material(output, label, context),
105 Self::Server(conn) => conn.export_keying_material(output, label, context),
106 }
107 }
108
109 /// This function uses `io` to complete any outstanding IO for this connection.
110 ///
111 /// See [`ConnectionCommon::complete_io()`] for more information.
112 pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
113 where
114 Self: Sized,
115 T: Read + io::Write,
116 {
117 match self {
118 Self::Client(conn) => conn.complete_io(io),
119 Self::Server(conn) => conn.complete_io(io),
120 }
121 }
122
123 /// Extract secrets, so they can be used when configuring kTLS, for example.
124 /// Should be used with care as it exposes secret key material.
125 pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
126 match self {
127 Self::Client(client) => client.dangerous_extract_secrets(),
128 Self::Server(server) => server.dangerous_extract_secrets(),
129 }
130 }
131
132 /// Sets a limit on the internal buffers
133 ///
134 /// See [`ConnectionCommon::set_buffer_limit()`] for more information.
135 pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
136 match self {
137 Self::Client(client) => client.set_buffer_limit(limit),
138 Self::Server(server) => server.set_buffer_limit(limit),
139 }
140 }
141
142 /// Sends a TLS1.3 `key_update` message to refresh a connection's keys
143 ///
144 /// See [`ConnectionCommon::refresh_traffic_keys()`] for more information.
145 pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
146 match self {
147 Self::Client(client) => client.refresh_traffic_keys(),
148 Self::Server(server) => server.refresh_traffic_keys(),
149 }
150 }
151 }
152
153 impl Deref for Connection {
154 type Target = CommonState;
155
156 fn deref(&self) -> &Self::Target {
157 match self {
158 Self::Client(conn) => &conn.core.common_state,
159 Self::Server(conn) => &conn.core.common_state,
160 }
161 }
162 }
163
164 impl DerefMut for Connection {
165 fn deref_mut(&mut self) -> &mut Self::Target {
166 match self {
167 Self::Client(conn) => &mut conn.core.common_state,
168 Self::Server(conn) => &mut conn.core.common_state,
169 }
170 }
171 }
172
173 /// A structure that implements [`std::io::Read`] for reading plaintext.
174 pub struct Reader<'a> {
175 pub(super) received_plaintext: &'a mut ChunkVecBuffer,
176 pub(super) has_received_close_notify: bool,
177 pub(super) has_seen_eof: bool,
178 }
179
180 impl<'a> Reader<'a> {
181 /// Check the connection's state if no bytes are available for reading.
182 fn check_no_bytes_state(&self) -> io::Result<()> {
183 match (self.has_received_close_notify, self.has_seen_eof) {
184 // cleanly closed; don't care about TCP EOF: express this as Ok(0)
185 (true, _) => Ok(()),
186 // unclean closure
187 (false, true) => Err(io::Error::new(
188 io::ErrorKind::UnexpectedEof,
189 UNEXPECTED_EOF_MESSAGE,
190 )),
191 // connection still going, but needs more data: signal `WouldBlock` so that
192 // the caller knows this
193 (false, false) => Err(io::ErrorKind::WouldBlock.into()),
194 }
195 }
196
197 /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
198 ///
199 /// This method consumes `self` so that it can return a slice whose lifetime is bounded by
200 /// the [`ConnectionCommon`] that created this `Reader`.
201 pub fn into_first_chunk(self) -> io::Result<&'a [u8]> {
202 match self.received_plaintext.chunk() {
203 Some(chunk) => Ok(chunk),
204 None => {
205 self.check_no_bytes_state()?;
206 Ok(&[])
207 }
208 }
209 }
210 }
211
212 impl Read for Reader<'_> {
213 /// Obtain plaintext data received from the peer over this TLS connection.
214 ///
215 /// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all
216 /// the pending data has been read. No further data can be received on that
217 /// connection, so the underlying TCP connection should be half-closed too.
218 ///
219 /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
220 /// `close_notify` alert) this function returns a `std::io::Error` of type
221 /// `ErrorKind::UnexpectedEof` once any pending data has been read.
222 ///
223 /// Note that support for `close_notify` varies in peer TLS libraries: many do not
224 /// support it and uncleanly close the TCP connection (this might be
225 /// vulnerable to truncation attacks depending on the application protocol).
226 /// This means applications using rustls must both handle EOF
227 /// from this function, *and* unexpected EOF of the underlying TCP connection.
228 ///
229 /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
230 ///
231 /// You may learn the number of bytes available at any time by inspecting
232 /// the return of [`Connection::process_new_packets`].
233 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
234 let len = self.received_plaintext.read(buf)?;
235 if len > 0 || buf.is_empty() {
236 return Ok(len);
237 }
238
239 self.check_no_bytes_state()
240 .map(|()| len)
241 }
242 }
243
244 impl BufRead for Reader<'_> {
245 /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
246 /// This reads the same data as [`Reader::read()`], but returns a reference instead of
247 /// copying the data.
248 ///
249 /// The caller should call [`Reader::consume()`] afterward to advance the buffer.
250 ///
251 /// See [`Reader::into_first_chunk()`] for a version of this function that returns a
252 /// buffer with a longer lifetime.
253 fn fill_buf(&mut self) -> io::Result<&[u8]> {
254 Reader {
255 // reborrow
256 received_plaintext: self.received_plaintext,
257 ..*self
258 }
259 .into_first_chunk()
260 }
261
262 fn consume(&mut self, amt: usize) {
263 self.received_plaintext
264 .consume_first_chunk(amt)
265 }
266 }
267
268 const UNEXPECTED_EOF_MESSAGE: &str = "peer closed connection without sending TLS close_notify: \
269https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof";
270
271 /// A structure that implements [`std::io::Write`] for writing plaintext.
272 pub struct Writer<'a> {
273 sink: &'a mut dyn PlaintextSink,
274 }
275
276 impl<'a> Writer<'a> {
277 /// Create a new Writer.
278 ///
279 /// This is not an external interface. Get one of these objects
280 /// from [`Connection::writer`].
281 pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
282 Writer { sink }
283 }
284 }
285
286 impl io::Write for Writer<'_> {
287 /// Send the plaintext `buf` to the peer, encrypting
288 /// and authenticating it. Once this function succeeds
289 /// you should call [`Connection::write_tls`] which will output the
290 /// corresponding TLS records.
291 ///
292 /// This function buffers plaintext sent before the
293 /// TLS handshake completes, and sends it as soon
294 /// as it can. See [`ConnectionCommon::set_buffer_limit`] to control
295 /// the size of this buffer.
296 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
297 self.sink.write(buf)
298 }
299
300 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
301 self.sink.write_vectored(bufs)
302 }
303
304 fn flush(&mut self) -> io::Result<()> {
305 self.sink.flush()
306 }
307 }
308
309 /// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
310 /// allowing them to be the subject of a [`Writer`].
311 ///
312 /// [`ServerConnection`]: crate::ServerConnection
313 /// [`ClientConnection`]: crate::ClientConnection
314 pub(crate) trait PlaintextSink {
315 fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
316 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
317 fn flush(&mut self) -> io::Result<()>;
318 }
319
320 impl<T> PlaintextSink for ConnectionCommon<T> {
321 fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
322 let len = self
323 .core
324 .common_state
325 .buffer_plaintext(buf.into(), &mut self.sendable_plaintext);
326 self.core.maybe_refresh_traffic_keys();
327 Ok(len)
328 }
329
330 fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
331 let payload_owner: Vec<&[u8]>;
332 let payload = match bufs.len() {
333 0 => return Ok(0),
334 1 => OutboundChunks::Single(bufs[0].deref()),
335 _ => {
336 payload_owner = bufs
337 .iter()
338 .map(|io_slice| io_slice.deref())
339 .collect();
340
341 OutboundChunks::new(&payload_owner)
342 }
343 };
344 let len = self
345 .core
346 .common_state
347 .buffer_plaintext(payload, &mut self.sendable_plaintext);
348 self.core.maybe_refresh_traffic_keys();
349 Ok(len)
350 }
351
352 fn flush(&mut self) -> io::Result<()> {
353 Ok(())
354 }
355 }
356}
357
358#[cfg(feature = "std")]
359pub use connection::{Connection, Reader, Writer};
360
361#[derive(Debug)]
362pub(crate) struct ConnectionRandoms {
363 pub(crate) client: [u8; 32],
364 pub(crate) server: [u8; 32],
365}
366
367impl ConnectionRandoms {
368 pub(crate) fn new(client: Random, server: Random) -> Self {
369 Self {
370 client: client.0,
371 server: server.0,
372 }
373 }
374}
375
376/// Interface shared by client and server connections.
377pub struct ConnectionCommon<Data> {
378 pub(crate) core: ConnectionCore<Data>,
379 deframer_buffer: DeframerVecBuffer,
380 sendable_plaintext: ChunkVecBuffer,
381}
382
383impl<Data> ConnectionCommon<Data> {
384 /// Processes any new packets read by a previous call to
385 /// [`Connection::read_tls`].
386 ///
387 /// Errors from this function relate to TLS protocol errors, and
388 /// are fatal to the connection. Future calls after an error will do
389 /// no new work and will return the same error. After an error is
390 /// received from [`process_new_packets`], you should not call [`read_tls`]
391 /// any more (it will fill up buffers to no purpose). However, you
392 /// may call the other methods on the connection, including `write`,
393 /// `send_close_notify`, and `write_tls`. Most likely you will want to
394 /// call `write_tls` to send any alerts queued by the error and then
395 /// close the underlying connection.
396 ///
397 /// Success from this function comes with some sundry state data
398 /// about the connection.
399 ///
400 /// [`read_tls`]: Connection::read_tls
401 /// [`process_new_packets`]: Connection::process_new_packets
402 #[inline]
403 pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
404 self.core
405 .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)
406 }
407
408 /// Derives key material from the agreed connection secrets.
409 ///
410 /// This function fills in `output` with `output.len()` bytes of key
411 /// material derived from the master session secret using `label`
412 /// and `context` for diversification. Ownership of the buffer is taken
413 /// by the function and returned via the Ok result to ensure no key
414 /// material leaks if the function fails.
415 ///
416 /// See RFC5705 for more details on what this does and is for.
417 ///
418 /// For TLS1.3 connections, this function does not use the
419 /// "early" exporter at any point.
420 ///
421 /// This function fails if called prior to the handshake completing;
422 /// check with [`CommonState::is_handshaking`] first.
423 ///
424 /// This function fails if `output.len()` is zero.
425 #[inline]
426 pub fn export_keying_material<T: AsMut<[u8]>>(
427 &self,
428 output: T,
429 label: &[u8],
430 context: Option<&[u8]>,
431 ) -> Result<T, Error> {
432 self.core
433 .export_keying_material(output, label, context)
434 }
435
436 /// Extract secrets, so they can be used when configuring kTLS, for example.
437 /// Should be used with care as it exposes secret key material.
438 pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
439 self.core.dangerous_extract_secrets()
440 }
441
442 /// Sets a limit on the internal buffers used to buffer
443 /// unsent plaintext (prior to completing the TLS handshake)
444 /// and unsent TLS records. This limit acts only on application
445 /// data written through [`Connection::writer`].
446 ///
447 /// By default the limit is 64KB. The limit can be set
448 /// at any time, even if the current buffer use is higher.
449 ///
450 /// [`None`] means no limit applies, and will mean that written
451 /// data is buffered without bound -- it is up to the application
452 /// to appropriately schedule its plaintext and TLS writes to bound
453 /// memory usage.
454 ///
455 /// For illustration: `Some(1)` means a limit of one byte applies:
456 /// [`Connection::writer`] will accept only one byte, encrypt it and
457 /// add a TLS header. Once this is sent via [`Connection::write_tls`],
458 /// another byte may be sent.
459 ///
460 /// # Internal write-direction buffering
461 /// rustls has two buffers whose size are bounded by this setting:
462 ///
463 /// ## Buffering of unsent plaintext data prior to handshake completion
464 ///
465 /// Calls to [`Connection::writer`] before or during the handshake
466 /// are buffered (up to the limit specified here). Once the
467 /// handshake completes this data is encrypted and the resulting
468 /// TLS records are added to the outgoing buffer.
469 ///
470 /// ## Buffering of outgoing TLS records
471 ///
472 /// This buffer is used to store TLS records that rustls needs to
473 /// send to the peer. It is used in these two circumstances:
474 ///
475 /// - by [`Connection::process_new_packets`] when a handshake or alert
476 /// TLS record needs to be sent.
477 /// - by [`Connection::writer`] post-handshake: the plaintext is
478 /// encrypted and the resulting TLS record is buffered.
479 ///
480 /// This buffer is emptied by [`Connection::write_tls`].
481 ///
482 /// [`Connection::writer`]: crate::Connection::writer
483 /// [`Connection::write_tls`]: crate::Connection::write_tls
484 /// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
485 pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
486 self.sendable_plaintext.set_limit(limit);
487 self.sendable_tls.set_limit(limit);
488 }
489
490 /// Sends a TLS1.3 `key_update` message to refresh a connection's keys.
491 ///
492 /// This call refreshes our encryption keys. Once the peer receives the message,
493 /// it refreshes _its_ encryption and decryption keys and sends a response.
494 /// Once we receive that response, we refresh our decryption keys to match.
495 /// At the end of this process, keys in both directions have been refreshed.
496 ///
497 /// Note that this process does not happen synchronously: this call just
498 /// arranges that the `key_update` message will be included in the next
499 /// `write_tls` output.
500 ///
501 /// This fails with `Error::HandshakeNotComplete` if called before the initial
502 /// handshake is complete, or if a version prior to TLS1.3 is negotiated.
503 ///
504 /// # Usage advice
505 /// Note that other implementations (including rustls) may enforce limits on
506 /// the number of `key_update` messages allowed on a given connection to prevent
507 /// denial of service. Therefore, this should be called sparingly.
508 ///
509 /// rustls implicitly and automatically refreshes traffic keys when needed
510 /// according to the selected cipher suite's cryptographic constraints. There
511 /// is therefore no need to call this manually to avoid cryptographic keys
512 /// "wearing out".
513 ///
514 /// The main reason to call this manually is to roll keys when it is known
515 /// a connection will be idle for a long period.
516 pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
517 self.core.refresh_traffic_keys()
518 }
519}
520
521#[cfg(feature = "std")]
522impl<Data> ConnectionCommon<Data> {
523 /// Returns an object that allows reading plaintext.
524 pub fn reader(&mut self) -> Reader<'_> {
525 let common = &mut self.core.common_state;
526 Reader {
527 received_plaintext: &mut common.received_plaintext,
528 // Are we done? i.e., have we processed all received messages, and received a
529 // close_notify to indicate that no new messages will arrive?
530 has_received_close_notify: common.has_received_close_notify,
531 has_seen_eof: common.has_seen_eof,
532 }
533 }
534
535 /// Returns an object that allows writing plaintext.
536 pub fn writer(&mut self) -> Writer<'_> {
537 Writer::new(self)
538 }
539
540 /// This function uses `io` to complete any outstanding IO for
541 /// this connection.
542 ///
543 /// This is a convenience function which solely uses other parts
544 /// of the public API.
545 ///
546 /// What this means depends on the connection state:
547 ///
548 /// - If the connection [`is_handshaking`], then IO is performed until
549 /// the handshake is complete.
550 /// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
551 /// until it is all written.
552 /// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
553 /// once.
554 ///
555 /// The return value is the number of bytes read from and written
556 /// to `io`, respectively.
557 ///
558 /// This function will block if `io` blocks.
559 ///
560 /// Errors from TLS record handling (i.e., from [`process_new_packets`])
561 /// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
562 ///
563 /// [`is_handshaking`]: CommonState::is_handshaking
564 /// [`wants_read`]: CommonState::wants_read
565 /// [`wants_write`]: CommonState::wants_write
566 /// [`write_tls`]: ConnectionCommon::write_tls
567 /// [`read_tls`]: ConnectionCommon::read_tls
568 /// [`process_new_packets`]: ConnectionCommon::process_new_packets
569 pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
570 where
571 Self: Sized,
572 T: io::Read + io::Write,
573 {
574 let mut eof = false;
575 let mut wrlen = 0;
576 let mut rdlen = 0;
577
578 loop {
579 let until_handshaked = self.is_handshaking();
580
581 if !self.wants_write() && !self.wants_read() {
582 // We will make no further progress.
583 return Ok((rdlen, wrlen));
584 }
585
586 while self.wants_write() {
587 match self.write_tls(io)? {
588 0 => {
589 io.flush()?;
590 return Ok((rdlen, wrlen)); // EOF.
591 }
592 n => wrlen += n,
593 }
594 }
595 io.flush()?;
596
597 if !until_handshaked && wrlen > 0 {
598 return Ok((rdlen, wrlen));
599 }
600
601 while !eof && self.wants_read() {
602 let read_size = match self.read_tls(io) {
603 Ok(0) => {
604 eof = true;
605 Some(0)
606 }
607 Ok(n) => {
608 rdlen += n;
609 Some(n)
610 }
611 Err(err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
612 Err(err) => return Err(err),
613 };
614 if read_size.is_some() {
615 break;
616 }
617 }
618
619 match self.process_new_packets() {
620 Ok(_) => {}
621 Err(e) => {
622 // In case we have an alert to send describing this error,
623 // try a last-gasp write -- but don't predate the primary
624 // error.
625 let _ignored = self.write_tls(io);
626 let _ignored = io.flush();
627
628 return Err(io::Error::new(io::ErrorKind::InvalidData, e));
629 }
630 };
631
632 // if we're doing IO until handshaked, and we believe we've finished handshaking,
633 // but process_new_packets() has queued TLS data to send, loop around again to write
634 // the queued messages.
635 if until_handshaked && !self.is_handshaking() && self.wants_write() {
636 continue;
637 }
638
639 match (eof, until_handshaked, self.is_handshaking()) {
640 (_, true, false) => return Ok((rdlen, wrlen)),
641 (_, false, _) => return Ok((rdlen, wrlen)),
642 (true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
643 (..) => {}
644 }
645 }
646 }
647
648 /// Extract the first handshake message.
649 ///
650 /// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
651 /// `process_handshake_messages()` path, specialized for the first handshake message.
652 pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> {
653 let mut buffer_progress = self.core.hs_deframer.progress();
654
655 let res = self
656 .core
657 .deframe(
658 None,
659 self.deframer_buffer.filled_mut(),
660 &mut buffer_progress,
661 )
662 .map(|opt| opt.map(|pm| Message::try_from(pm).map(|m| m.into_owned())));
663
664 match res? {
665 Some(Ok(msg)) => {
666 self.deframer_buffer
667 .discard(buffer_progress.take_discard());
668 Ok(Some(msg))
669 }
670 Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)),
671 None => Ok(None),
672 }
673 }
674
675 pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
676 self.core.state = Ok(new);
677 }
678
679 /// Read TLS content from `rd` into the internal buffer.
680 ///
681 /// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
682 /// a socket or pipe might).
683 ///
684 /// You should call [`process_new_packets()`] each time a call to this function succeeds in order
685 /// to empty the incoming TLS data buffer.
686 ///
687 /// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
688 /// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
689 /// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
690 ///
691 /// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
692 /// each time a call to this function succeeds.
693 /// * In order to empty the incoming plaintext data buffer, you should empty it through
694 /// the [`reader()`] after the call to [`process_new_packets()`].
695 ///
696 /// This function also returns `Ok(0)` once a `close_notify` alert has been successfully
697 /// received. No additional data is ever read in this state.
698 ///
699 /// [`process_new_packets()`]: ConnectionCommon::process_new_packets
700 /// [`reader()`]: ConnectionCommon::reader
701 pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
702 if self.received_plaintext.is_full() {
703 return Err(io::Error::other("received plaintext buffer full"));
704 }
705
706 if self.has_received_close_notify {
707 return Ok(0);
708 }
709
710 let res = self
711 .deframer_buffer
712 .read(rd, self.core.hs_deframer.is_active());
713 if let Ok(0) = res {
714 self.has_seen_eof = true;
715 }
716 res
717 }
718
719 /// Writes TLS messages to `wr`.
720 ///
721 /// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
722 /// (after encoding and encryption).
723 ///
724 /// After this function returns, the connection buffer may not yet be fully flushed. The
725 /// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
726 pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
727 self.sendable_tls.write_to(wr)
728 }
729}
730
731impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> {
732 fn from(conn: &'a mut ConnectionCommon<Data>) -> Self {
733 Self {
734 common: &mut conn.core.common_state,
735 data: &mut conn.core.data,
736 sendable_plaintext: Some(&mut conn.sendable_plaintext),
737 }
738 }
739}
740
741impl<T> Deref for ConnectionCommon<T> {
742 type Target = CommonState;
743
744 fn deref(&self) -> &Self::Target {
745 &self.core.common_state
746 }
747}
748
749impl<T> DerefMut for ConnectionCommon<T> {
750 fn deref_mut(&mut self) -> &mut Self::Target {
751 &mut self.core.common_state
752 }
753}
754
755impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
756 fn from(core: ConnectionCore<Data>) -> Self {
757 Self {
758 core,
759 deframer_buffer: DeframerVecBuffer::default(),
760 sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
761 }
762 }
763}
764
765/// Interface shared by unbuffered client and server connections.
766pub struct UnbufferedConnectionCommon<Data> {
767 pub(crate) core: ConnectionCore<Data>,
768 wants_write: bool,
769 emitted_peer_closed_state: bool,
770}
771
772impl<Data> From<ConnectionCore<Data>> for UnbufferedConnectionCommon<Data> {
773 fn from(core: ConnectionCore<Data>) -> Self {
774 Self {
775 core,
776 wants_write: false,
777 emitted_peer_closed_state: false,
778 }
779 }
780}
781
782impl<Data> UnbufferedConnectionCommon<Data> {
783 /// Extract secrets, so they can be used when configuring kTLS, for example.
784 /// Should be used with care as it exposes secret key material.
785 pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
786 self.core.dangerous_extract_secrets()
787 }
788}
789
790impl<T> Deref for UnbufferedConnectionCommon<T> {
791 type Target = CommonState;
792
793 fn deref(&self) -> &Self::Target {
794 &self.core.common_state
795 }
796}
797
798pub(crate) struct ConnectionCore<Data> {
799 pub(crate) state: Result<Box<dyn State<Data>>, Error>,
800 pub(crate) data: Data,
801 pub(crate) common_state: CommonState,
802 pub(crate) hs_deframer: HandshakeDeframer,
803
804 /// We limit consecutive empty fragments to avoid a route for the peer to send
805 /// us significant but fruitless traffic.
806 seen_consecutive_empty_fragments: u8,
807}
808
809impl<Data> ConnectionCore<Data> {
810 pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
811 Self {
812 state: Ok(state),
813 data,
814 common_state,
815 hs_deframer: HandshakeDeframer::default(),
816 seen_consecutive_empty_fragments: 0,
817 }
818 }
819
820 pub(crate) fn process_new_packets(
821 &mut self,
822 deframer_buffer: &mut DeframerVecBuffer,
823 sendable_plaintext: &mut ChunkVecBuffer,
824 ) -> Result<IoState, Error> {
825 let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
826 Ok(state) => state,
827 Err(e) => {
828 self.state = Err(e.clone());
829 return Err(e);
830 }
831 };
832
833 let mut buffer_progress = self.hs_deframer.progress();
834
835 loop {
836 let res = self.deframe(
837 Some(&*state),
838 deframer_buffer.filled_mut(),
839 &mut buffer_progress,
840 );
841
842 let opt_msg = match res {
843 Ok(opt_msg) => opt_msg,
844 Err(e) => {
845 self.state = Err(e.clone());
846 deframer_buffer.discard(buffer_progress.take_discard());
847 return Err(e);
848 }
849 };
850
851 let Some(msg) = opt_msg else {
852 break;
853 };
854
855 match self.process_msg(msg, state, Some(sendable_plaintext)) {
856 Ok(new) => state = new,
857 Err(e) => {
858 self.state = Err(e.clone());
859 deframer_buffer.discard(buffer_progress.take_discard());
860 return Err(e);
861 }
862 }
863
864 if self
865 .common_state
866 .has_received_close_notify
867 {
868 // "Any data received after a closure alert has been received MUST be ignored."
869 // -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1>
870 // This is data that has already been accepted in `read_tls`.
871 buffer_progress.add_discard(deframer_buffer.filled().len());
872 break;
873 }
874
875 deframer_buffer.discard(buffer_progress.take_discard());
876 }
877
878 deframer_buffer.discard(buffer_progress.take_discard());
879 self.state = Ok(state);
880 Ok(self.common_state.current_io_state())
881 }
882
883 /// Pull a message out of the deframer and send any messages that need to be sent as a result.
884 fn deframe<'b>(
885 &mut self,
886 state: Option<&dyn State<Data>>,
887 buffer: &'b mut [u8],
888 buffer_progress: &mut BufferProgress,
889 ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
890 // before processing any more of `buffer`, return any extant messages from `hs_deframer`
891 if self.hs_deframer.has_message_ready() {
892 Ok(self.take_handshake_message(buffer, buffer_progress))
893 } else {
894 self.process_more_input(state, buffer, buffer_progress)
895 }
896 }
897
898 fn take_handshake_message<'b>(
899 &mut self,
900 buffer: &'b mut [u8],
901 buffer_progress: &mut BufferProgress,
902 ) -> Option<InboundPlainMessage<'b>> {
903 self.hs_deframer
904 .iter(buffer)
905 .next()
906 .map(|(message, discard)| {
907 buffer_progress.add_discard(discard);
908 message
909 })
910 }
911
912 fn process_more_input<'b>(
913 &mut self,
914 state: Option<&dyn State<Data>>,
915 buffer: &'b mut [u8],
916 buffer_progress: &mut BufferProgress,
917 ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
918 let version_is_tls13 = matches!(
919 self.common_state.negotiated_version,
920 Some(ProtocolVersion::TLSv1_3)
921 );
922
923 let locator = Locator::new(buffer);
924
925 loop {
926 let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]);
927
928 let (message, processed) = loop {
929 let message = match iter.next().transpose() {
930 Ok(Some(message)) => message,
931 Ok(None) => return Ok(None),
932 Err(err) => return Err(self.handle_deframe_error(err, state)),
933 };
934
935 let allowed_plaintext = match message.typ {
936 // CCS messages are always plaintext.
937 ContentType::ChangeCipherSpec => true,
938 // Alerts are allowed to be plaintext if-and-only-if:
939 // * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
940 // keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
941 // * We have not yet decrypted any messages from the peer - if we have we don't
942 // expect any plaintext.
943 // * The payload size is indicative of a plaintext alert message.
944 ContentType::Alert
945 if version_is_tls13
946 && !self
947 .common_state
948 .record_layer
949 .has_decrypted()
950 && message.payload.len() <= 2 =>
951 {
952 true
953 }
954 // In other circumstances, we expect all messages to be encrypted.
955 _ => false,
956 };
957
958 if allowed_plaintext && !self.hs_deframer.is_active() {
959 break (message.into_plain_message(), iter.bytes_consumed());
960 }
961
962 let message = match self
963 .common_state
964 .record_layer
965 .decrypt_incoming(message)
966 {
967 // failed decryption during trial decryption is not allowed to be
968 // interleaved with partial handshake data.
969 Ok(None) if !self.hs_deframer.is_aligned() => {
970 return Err(
971 PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(),
972 );
973 }
974
975 // failed decryption during trial decryption.
976 Ok(None) => continue,
977
978 Ok(Some(message)) => message,
979
980 Err(err) => return Err(self.handle_deframe_error(err, state)),
981 };
982
983 let Decrypted {
984 want_close_before_decrypt,
985 plaintext,
986 } = message;
987
988 if want_close_before_decrypt {
989 self.common_state.send_close_notify();
990 }
991
992 break (plaintext, iter.bytes_consumed());
993 };
994
995 if !self.hs_deframer.is_aligned() && message.typ != ContentType::Handshake {
996 // "Handshake messages MUST NOT be interleaved with other record
997 // types. That is, if a handshake message is split over two or more
998 // records, there MUST NOT be any other records between them."
999 // https://www.rfc-editor.org/rfc/rfc8446#section-5.1
1000 return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into());
1001 }
1002
1003 match message.payload.len() {
1004 0 => {
1005 if self.seen_consecutive_empty_fragments
1006 == ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX
1007 {
1008 return Err(PeerMisbehaved::TooManyEmptyFragments.into());
1009 }
1010 self.seen_consecutive_empty_fragments += 1;
1011 }
1012 _ => {
1013 self.seen_consecutive_empty_fragments = 0;
1014 }
1015 };
1016
1017 buffer_progress.add_processed(processed);
1018
1019 // do an end-run around the borrow checker, converting `message` (containing
1020 // a borrowed slice) to an unborrowed one (containing a `Range` into the
1021 // same buffer). the reborrow happens inside the branch that returns the
1022 // message.
1023 //
1024 // is fixed by -Zpolonius
1025 // https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions
1026 let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message);
1027
1028 if unborrowed.typ != ContentType::Handshake {
1029 let message = unborrowed.reborrow(&Delocator::new(buffer));
1030 buffer_progress.add_discard(processed);
1031 return Ok(Some(message));
1032 }
1033
1034 let message = unborrowed.reborrow(&Delocator::new(buffer));
1035 self.hs_deframer
1036 .input_message(message, &locator, buffer_progress.processed());
1037 self.hs_deframer.coalesce(buffer)?;
1038
1039 self.common_state.aligned_handshake = self.hs_deframer.is_aligned();
1040
1041 if self.hs_deframer.has_message_ready() {
1042 // trial decryption finishes with the first handshake message after it started.
1043 self.common_state
1044 .record_layer
1045 .finish_trial_decryption();
1046
1047 return Ok(self.take_handshake_message(buffer, buffer_progress));
1048 }
1049 }
1050 }
1051
1052 fn handle_deframe_error(&mut self, error: Error, state: Option<&dyn State<Data>>) -> Error {
1053 match error {
1054 error @ Error::InvalidMessage(_) => {
1055 if self.common_state.is_quic() {
1056 self.common_state.quic.alert = Some(AlertDescription::DecodeError);
1057 error
1058 } else {
1059 self.common_state
1060 .send_fatal_alert(AlertDescription::DecodeError, error)
1061 }
1062 }
1063 Error::PeerSentOversizedRecord => self
1064 .common_state
1065 .send_fatal_alert(AlertDescription::RecordOverflow, error),
1066 Error::DecryptError => {
1067 if let Some(state) = state {
1068 state.handle_decrypt_error();
1069 }
1070 self.common_state
1071 .send_fatal_alert(AlertDescription::BadRecordMac, error)
1072 }
1073
1074 error => error,
1075 }
1076 }
1077
1078 fn process_msg(
1079 &mut self,
1080 msg: InboundPlainMessage<'_>,
1081 state: Box<dyn State<Data>>,
1082 sendable_plaintext: Option<&mut ChunkVecBuffer>,
1083 ) -> Result<Box<dyn State<Data>>, Error> {
1084 // Drop CCS messages during handshake in TLS1.3
1085 if msg.typ == ContentType::ChangeCipherSpec
1086 && !self
1087 .common_state
1088 .may_receive_application_data
1089 && self.common_state.is_tls13()
1090 {
1091 if !msg.is_valid_ccs() {
1092 // "An implementation which receives any other change_cipher_spec value or
1093 // which receives a protected change_cipher_spec record MUST abort the
1094 // handshake with an "unexpected_message" alert."
1095 return Err(self.common_state.send_fatal_alert(
1096 AlertDescription::UnexpectedMessage,
1097 PeerMisbehaved::IllegalMiddleboxChangeCipherSpec,
1098 ));
1099 }
1100
1101 self.common_state
1102 .received_tls13_change_cipher_spec()?;
1103 trace!("Dropping CCS");
1104 return Ok(state);
1105 }
1106
1107 // Now we can fully parse the message payload.
1108 let msg = match Message::try_from(msg) {
1109 Ok(msg) => msg,
1110 Err(err) => {
1111 return Err(self
1112 .common_state
1113 .send_fatal_alert(AlertDescription::from(err), err));
1114 }
1115 };
1116
1117 // For alerts, we have separate logic.
1118 if let MessagePayload::Alert(alert) = &msg.payload {
1119 self.common_state.process_alert(alert)?;
1120 return Ok(state);
1121 }
1122
1123 self.common_state
1124 .process_main_protocol(msg, state, &mut self.data, sendable_plaintext)
1125 }
1126
1127 pub(crate) fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
1128 Ok(self
1129 .dangerous_into_kernel_connection()?
1130 .0)
1131 }
1132
1133 pub(crate) fn dangerous_into_kernel_connection(
1134 self,
1135 ) -> Result<(ExtractedSecrets, KernelConnection<Data>), Error> {
1136 if !self
1137 .common_state
1138 .enable_secret_extraction
1139 {
1140 return Err(Error::General("Secret extraction is disabled".into()));
1141 }
1142
1143 if self.common_state.is_handshaking() {
1144 return Err(Error::HandshakeNotComplete);
1145 }
1146
1147 if !self
1148 .common_state
1149 .sendable_tls
1150 .is_empty()
1151 {
1152 return Err(Error::General(
1153 "cannot convert into an KernelConnection while there are still buffered TLS records to send"
1154 .into()
1155 ));
1156 }
1157
1158 let state = self.state?;
1159
1160 let record_layer = &self.common_state.record_layer;
1161 let secrets = state.extract_secrets()?;
1162 let secrets = ExtractedSecrets {
1163 tx: (record_layer.write_seq(), secrets.tx),
1164 rx: (record_layer.read_seq(), secrets.rx),
1165 };
1166
1167 let state = state.into_external_state()?;
1168 let external = KernelConnection::new(state, self.common_state)?;
1169
1170 Ok((secrets, external))
1171 }
1172
1173 pub(crate) fn export_keying_material<T: AsMut<[u8]>>(
1174 &self,
1175 mut output: T,
1176 label: &[u8],
1177 context: Option<&[u8]>,
1178 ) -> Result<T, Error> {
1179 if output.as_mut().is_empty() {
1180 return Err(Error::General(
1181 "export_keying_material with zero-length output".into(),
1182 ));
1183 }
1184
1185 match self.state.as_ref() {
1186 Ok(st) => st
1187 .export_keying_material(output.as_mut(), label, context)
1188 .map(|_| output),
1189 Err(e) => Err(e.clone()),
1190 }
1191 }
1192
1193 /// Trigger a `refresh_traffic_keys` if required by `CommonState`.
1194 fn maybe_refresh_traffic_keys(&mut self) {
1195 if mem::take(
1196 &mut self
1197 .common_state
1198 .refresh_traffic_keys_pending,
1199 ) {
1200 let _ = self.refresh_traffic_keys();
1201 }
1202 }
1203
1204 fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
1205 match &mut self.state {
1206 Ok(st) => st.send_key_update_request(&mut self.common_state),
1207 Err(e) => Err(e.clone()),
1208 }
1209 }
1210}
1211
1212/// Data specific to the peer's side (client or server).
1213pub trait SideData: Debug {}
1214
1215/// An InboundPlainMessage which does not borrow its payload, but
1216/// references a range that can later be borrowed.
1217struct InboundUnborrowedMessage {
1218 typ: ContentType,
1219 version: ProtocolVersion,
1220 bounds: Range<usize>,
1221}
1222
1223impl InboundUnborrowedMessage {
1224 fn unborrow(locator: &Locator, msg: InboundPlainMessage<'_>) -> Self {
1225 Self {
1226 typ: msg.typ,
1227 version: msg.version,
1228 bounds: locator.locate(msg.payload),
1229 }
1230 }
1231
1232 fn reborrow<'b>(self, delocator: &Delocator<'b>) -> InboundPlainMessage<'b> {
1233 InboundPlainMessage {
1234 typ: self.typ,
1235 version: self.version,
1236 payload: delocator.slice_from_range(&self.bounds),
1237 }
1238 }
1239}
1240
1241/// cf. BoringSSL's `kMaxEmptyRecords`
1242/// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128>
1243const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32;