rustls/
conn.rs

1use alloc::boxed::Box;
2use core::fmt::Debug;
3use core::mem;
4use core::ops::{Deref, DerefMut, Range};
5#[cfg(feature = "std")]
6use std::io;
7
8use kernel::KernelConnection;
9
10use crate::common_state::{CommonState, Context, DEFAULT_BUFFER_LIMIT, IoState, State};
11use crate::enums::{AlertDescription, ContentType, ProtocolVersion};
12use crate::error::{Error, PeerMisbehaved};
13use crate::log::trace;
14use crate::msgs::deframer::DeframerIter;
15use crate::msgs::deframer::buffers::{BufferProgress, DeframerVecBuffer, Delocator, Locator};
16use crate::msgs::deframer::handshake::HandshakeDeframer;
17use crate::msgs::handshake::Random;
18use crate::msgs::message::{InboundPlainMessage, Message, MessagePayload};
19use crate::record_layer::Decrypted;
20use crate::suites::ExtractedSecrets;
21use crate::vecbuf::ChunkVecBuffer;
22
23// pub so that it can be re-exported from the crate root
24pub mod kernel;
25pub(crate) mod unbuffered;
26
27#[cfg(feature = "std")]
28mod connection {
29    use alloc::vec::Vec;
30    use core::fmt::Debug;
31    use core::ops::{Deref, DerefMut};
32    use std::io::{self, BufRead, Read};
33
34    use crate::ConnectionCommon;
35    use crate::common_state::{CommonState, IoState};
36    use crate::error::Error;
37    use crate::msgs::message::OutboundChunks;
38    use crate::suites::ExtractedSecrets;
39    use crate::vecbuf::ChunkVecBuffer;
40
41    /// A client or server connection.
42    #[derive(Debug)]
43    pub enum Connection {
44        /// A client connection
45        Client(crate::client::ClientConnection),
46        /// A server connection
47        Server(crate::server::ServerConnection),
48    }
49
50    impl Connection {
51        /// Read TLS content from `rd`.
52        ///
53        /// See [`ConnectionCommon::read_tls()`] for more information.
54        pub fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error> {
55            match self {
56                Self::Client(conn) => conn.read_tls(rd),
57                Self::Server(conn) => conn.read_tls(rd),
58            }
59        }
60
61        /// Writes TLS messages to `wr`.
62        ///
63        /// See [`ConnectionCommon::write_tls()`] for more information.
64        pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
65            self.sendable_tls.write_to(wr)
66        }
67
68        /// Returns an object that allows reading plaintext.
69        pub fn reader(&mut self) -> Reader<'_> {
70            match self {
71                Self::Client(conn) => conn.reader(),
72                Self::Server(conn) => conn.reader(),
73            }
74        }
75
76        /// Returns an object that allows writing plaintext.
77        pub fn writer(&mut self) -> Writer<'_> {
78            match self {
79                Self::Client(conn) => Writer::new(&mut **conn),
80                Self::Server(conn) => Writer::new(&mut **conn),
81            }
82        }
83
84        /// Processes any new packets read by a previous call to [`Connection::read_tls`].
85        ///
86        /// See [`ConnectionCommon::process_new_packets()`] for more information.
87        pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
88            match self {
89                Self::Client(conn) => conn.process_new_packets(),
90                Self::Server(conn) => conn.process_new_packets(),
91            }
92        }
93
94        /// Derives key material from the agreed connection secrets.
95        ///
96        /// See [`ConnectionCommon::export_keying_material()`] for more information.
97        pub fn export_keying_material<T: AsMut<[u8]>>(
98            &self,
99            output: T,
100            label: &[u8],
101            context: Option<&[u8]>,
102        ) -> Result<T, Error> {
103            match self {
104                Self::Client(conn) => conn.export_keying_material(output, label, context),
105                Self::Server(conn) => conn.export_keying_material(output, label, context),
106            }
107        }
108
109        /// This function uses `io` to complete any outstanding IO for this connection.
110        ///
111        /// See [`ConnectionCommon::complete_io()`] for more information.
112        pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
113        where
114            Self: Sized,
115            T: Read + io::Write,
116        {
117            match self {
118                Self::Client(conn) => conn.complete_io(io),
119                Self::Server(conn) => conn.complete_io(io),
120            }
121        }
122
123        /// Extract secrets, so they can be used when configuring kTLS, for example.
124        /// Should be used with care as it exposes secret key material.
125        pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
126            match self {
127                Self::Client(client) => client.dangerous_extract_secrets(),
128                Self::Server(server) => server.dangerous_extract_secrets(),
129            }
130        }
131
132        /// Sets a limit on the internal buffers
133        ///
134        /// See [`ConnectionCommon::set_buffer_limit()`] for more information.
135        pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
136            match self {
137                Self::Client(client) => client.set_buffer_limit(limit),
138                Self::Server(server) => server.set_buffer_limit(limit),
139            }
140        }
141
142        /// Sends a TLS1.3 `key_update` message to refresh a connection's keys
143        ///
144        /// See [`ConnectionCommon::refresh_traffic_keys()`] for more information.
145        pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
146            match self {
147                Self::Client(client) => client.refresh_traffic_keys(),
148                Self::Server(server) => server.refresh_traffic_keys(),
149            }
150        }
151    }
152
153    impl Deref for Connection {
154        type Target = CommonState;
155
156        fn deref(&self) -> &Self::Target {
157            match self {
158                Self::Client(conn) => &conn.core.common_state,
159                Self::Server(conn) => &conn.core.common_state,
160            }
161        }
162    }
163
164    impl DerefMut for Connection {
165        fn deref_mut(&mut self) -> &mut Self::Target {
166            match self {
167                Self::Client(conn) => &mut conn.core.common_state,
168                Self::Server(conn) => &mut conn.core.common_state,
169            }
170        }
171    }
172
173    /// A structure that implements [`std::io::Read`] for reading plaintext.
174    pub struct Reader<'a> {
175        pub(super) received_plaintext: &'a mut ChunkVecBuffer,
176        pub(super) has_received_close_notify: bool,
177        pub(super) has_seen_eof: bool,
178    }
179
180    impl<'a> Reader<'a> {
181        /// Check the connection's state if no bytes are available for reading.
182        fn check_no_bytes_state(&self) -> io::Result<()> {
183            match (self.has_received_close_notify, self.has_seen_eof) {
184                // cleanly closed; don't care about TCP EOF: express this as Ok(0)
185                (true, _) => Ok(()),
186                // unclean closure
187                (false, true) => Err(io::Error::new(
188                    io::ErrorKind::UnexpectedEof,
189                    UNEXPECTED_EOF_MESSAGE,
190                )),
191                // connection still going, but needs more data: signal `WouldBlock` so that
192                // the caller knows this
193                (false, false) => Err(io::ErrorKind::WouldBlock.into()),
194            }
195        }
196
197        /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
198        ///
199        /// This method consumes `self` so that it can return a slice whose lifetime is bounded by
200        /// the [`ConnectionCommon`] that created this `Reader`.
201        pub fn into_first_chunk(self) -> io::Result<&'a [u8]> {
202            match self.received_plaintext.chunk() {
203                Some(chunk) => Ok(chunk),
204                None => {
205                    self.check_no_bytes_state()?;
206                    Ok(&[])
207                }
208            }
209        }
210    }
211
212    impl Read for Reader<'_> {
213        /// Obtain plaintext data received from the peer over this TLS connection.
214        ///
215        /// If the peer closes the TLS session cleanly, this returns `Ok(0)`  once all
216        /// the pending data has been read. No further data can be received on that
217        /// connection, so the underlying TCP connection should be half-closed too.
218        ///
219        /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a
220        /// `close_notify` alert) this function returns a `std::io::Error` of type
221        /// `ErrorKind::UnexpectedEof` once any pending data has been read.
222        ///
223        /// Note that support for `close_notify` varies in peer TLS libraries: many do not
224        /// support it and uncleanly close the TCP connection (this might be
225        /// vulnerable to truncation attacks depending on the application protocol).
226        /// This means applications using rustls must both handle EOF
227        /// from this function, *and* unexpected EOF of the underlying TCP connection.
228        ///
229        /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`.
230        ///
231        /// You may learn the number of bytes available at any time by inspecting
232        /// the return of [`Connection::process_new_packets`].
233        fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
234            let len = self.received_plaintext.read(buf)?;
235            if len > 0 || buf.is_empty() {
236                return Ok(len);
237            }
238
239            self.check_no_bytes_state()
240                .map(|()| len)
241        }
242    }
243
244    impl BufRead for Reader<'_> {
245        /// Obtain a chunk of plaintext data received from the peer over this TLS connection.
246        /// This reads the same data as [`Reader::read()`], but returns a reference instead of
247        /// copying the data.
248        ///
249        /// The caller should call [`Reader::consume()`] afterward to advance the buffer.
250        ///
251        /// See [`Reader::into_first_chunk()`] for a version of this function that returns a
252        /// buffer with a longer lifetime.
253        fn fill_buf(&mut self) -> io::Result<&[u8]> {
254            Reader {
255                // reborrow
256                received_plaintext: self.received_plaintext,
257                ..*self
258            }
259            .into_first_chunk()
260        }
261
262        fn consume(&mut self, amt: usize) {
263            self.received_plaintext
264                .consume_first_chunk(amt)
265        }
266    }
267
268    const UNEXPECTED_EOF_MESSAGE: &str = "peer closed connection without sending TLS close_notify: \
269https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof";
270
271    /// A structure that implements [`std::io::Write`] for writing plaintext.
272    pub struct Writer<'a> {
273        sink: &'a mut dyn PlaintextSink,
274    }
275
276    impl<'a> Writer<'a> {
277        /// Create a new Writer.
278        ///
279        /// This is not an external interface.  Get one of these objects
280        /// from [`Connection::writer`].
281        pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self {
282            Writer { sink }
283        }
284    }
285
286    impl io::Write for Writer<'_> {
287        /// Send the plaintext `buf` to the peer, encrypting
288        /// and authenticating it.  Once this function succeeds
289        /// you should call [`Connection::write_tls`] which will output the
290        /// corresponding TLS records.
291        ///
292        /// This function buffers plaintext sent before the
293        /// TLS handshake completes, and sends it as soon
294        /// as it can.  See [`ConnectionCommon::set_buffer_limit`] to control
295        /// the size of this buffer.
296        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
297            self.sink.write(buf)
298        }
299
300        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
301            self.sink.write_vectored(bufs)
302        }
303
304        fn flush(&mut self) -> io::Result<()> {
305            self.sink.flush()
306        }
307    }
308
309    /// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`]
310    /// allowing them to be the subject of a [`Writer`].
311    ///
312    /// [`ServerConnection`]: crate::ServerConnection
313    /// [`ClientConnection`]: crate::ClientConnection
314    pub(crate) trait PlaintextSink {
315        fn write(&mut self, buf: &[u8]) -> io::Result<usize>;
316        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>;
317        fn flush(&mut self) -> io::Result<()>;
318    }
319
320    impl<T> PlaintextSink for ConnectionCommon<T> {
321        fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
322            let len = self
323                .core
324                .common_state
325                .buffer_plaintext(buf.into(), &mut self.sendable_plaintext);
326            self.core.maybe_refresh_traffic_keys();
327            Ok(len)
328        }
329
330        fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
331            let payload_owner: Vec<&[u8]>;
332            let payload = match bufs.len() {
333                0 => return Ok(0),
334                1 => OutboundChunks::Single(bufs[0].deref()),
335                _ => {
336                    payload_owner = bufs
337                        .iter()
338                        .map(|io_slice| io_slice.deref())
339                        .collect();
340
341                    OutboundChunks::new(&payload_owner)
342                }
343            };
344            let len = self
345                .core
346                .common_state
347                .buffer_plaintext(payload, &mut self.sendable_plaintext);
348            self.core.maybe_refresh_traffic_keys();
349            Ok(len)
350        }
351
352        fn flush(&mut self) -> io::Result<()> {
353            Ok(())
354        }
355    }
356}
357
358#[cfg(feature = "std")]
359pub use connection::{Connection, Reader, Writer};
360
361#[derive(Debug)]
362pub(crate) struct ConnectionRandoms {
363    pub(crate) client: [u8; 32],
364    pub(crate) server: [u8; 32],
365}
366
367impl ConnectionRandoms {
368    pub(crate) fn new(client: Random, server: Random) -> Self {
369        Self {
370            client: client.0,
371            server: server.0,
372        }
373    }
374}
375
376/// Interface shared by client and server connections.
377pub struct ConnectionCommon<Data> {
378    pub(crate) core: ConnectionCore<Data>,
379    deframer_buffer: DeframerVecBuffer,
380    sendable_plaintext: ChunkVecBuffer,
381}
382
383impl<Data> ConnectionCommon<Data> {
384    /// Processes any new packets read by a previous call to
385    /// [`Connection::read_tls`].
386    ///
387    /// Errors from this function relate to TLS protocol errors, and
388    /// are fatal to the connection.  Future calls after an error will do
389    /// no new work and will return the same error. After an error is
390    /// received from [`process_new_packets`], you should not call [`read_tls`]
391    /// any more (it will fill up buffers to no purpose). However, you
392    /// may call the other methods on the connection, including `write`,
393    /// `send_close_notify`, and `write_tls`. Most likely you will want to
394    /// call `write_tls` to send any alerts queued by the error and then
395    /// close the underlying connection.
396    ///
397    /// Success from this function comes with some sundry state data
398    /// about the connection.
399    ///
400    /// [`read_tls`]: Connection::read_tls
401    /// [`process_new_packets`]: Connection::process_new_packets
402    #[inline]
403    pub fn process_new_packets(&mut self) -> Result<IoState, Error> {
404        self.core
405            .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext)
406    }
407
408    /// Derives key material from the agreed connection secrets.
409    ///
410    /// This function fills in `output` with `output.len()` bytes of key
411    /// material derived from the master session secret using `label`
412    /// and `context` for diversification. Ownership of the buffer is taken
413    /// by the function and returned via the Ok result to ensure no key
414    /// material leaks if the function fails.
415    ///
416    /// See RFC5705 for more details on what this does and is for.
417    ///
418    /// For TLS1.3 connections, this function does not use the
419    /// "early" exporter at any point.
420    ///
421    /// This function fails if called prior to the handshake completing;
422    /// check with [`CommonState::is_handshaking`] first.
423    ///
424    /// This function fails if `output.len()` is zero.
425    #[inline]
426    pub fn export_keying_material<T: AsMut<[u8]>>(
427        &self,
428        output: T,
429        label: &[u8],
430        context: Option<&[u8]>,
431    ) -> Result<T, Error> {
432        self.core
433            .export_keying_material(output, label, context)
434    }
435
436    /// Extract secrets, so they can be used when configuring kTLS, for example.
437    /// Should be used with care as it exposes secret key material.
438    pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
439        self.core.dangerous_extract_secrets()
440    }
441
442    /// Sets a limit on the internal buffers used to buffer
443    /// unsent plaintext (prior to completing the TLS handshake)
444    /// and unsent TLS records.  This limit acts only on application
445    /// data written through [`Connection::writer`].
446    ///
447    /// By default the limit is 64KB.  The limit can be set
448    /// at any time, even if the current buffer use is higher.
449    ///
450    /// [`None`] means no limit applies, and will mean that written
451    /// data is buffered without bound -- it is up to the application
452    /// to appropriately schedule its plaintext and TLS writes to bound
453    /// memory usage.
454    ///
455    /// For illustration: `Some(1)` means a limit of one byte applies:
456    /// [`Connection::writer`] will accept only one byte, encrypt it and
457    /// add a TLS header.  Once this is sent via [`Connection::write_tls`],
458    /// another byte may be sent.
459    ///
460    /// # Internal write-direction buffering
461    /// rustls has two buffers whose size are bounded by this setting:
462    ///
463    /// ## Buffering of unsent plaintext data prior to handshake completion
464    ///
465    /// Calls to [`Connection::writer`] before or during the handshake
466    /// are buffered (up to the limit specified here).  Once the
467    /// handshake completes this data is encrypted and the resulting
468    /// TLS records are added to the outgoing buffer.
469    ///
470    /// ## Buffering of outgoing TLS records
471    ///
472    /// This buffer is used to store TLS records that rustls needs to
473    /// send to the peer.  It is used in these two circumstances:
474    ///
475    /// - by [`Connection::process_new_packets`] when a handshake or alert
476    ///   TLS record needs to be sent.
477    /// - by [`Connection::writer`] post-handshake: the plaintext is
478    ///   encrypted and the resulting TLS record is buffered.
479    ///
480    /// This buffer is emptied by [`Connection::write_tls`].
481    ///
482    /// [`Connection::writer`]: crate::Connection::writer
483    /// [`Connection::write_tls`]: crate::Connection::write_tls
484    /// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
485    pub fn set_buffer_limit(&mut self, limit: Option<usize>) {
486        self.sendable_plaintext.set_limit(limit);
487        self.sendable_tls.set_limit(limit);
488    }
489
490    /// Sends a TLS1.3 `key_update` message to refresh a connection's keys.
491    ///
492    /// This call refreshes our encryption keys. Once the peer receives the message,
493    /// it refreshes _its_ encryption and decryption keys and sends a response.
494    /// Once we receive that response, we refresh our decryption keys to match.
495    /// At the end of this process, keys in both directions have been refreshed.
496    ///
497    /// Note that this process does not happen synchronously: this call just
498    /// arranges that the `key_update` message will be included in the next
499    /// `write_tls` output.
500    ///
501    /// This fails with `Error::HandshakeNotComplete` if called before the initial
502    /// handshake is complete, or if a version prior to TLS1.3 is negotiated.
503    ///
504    /// # Usage advice
505    /// Note that other implementations (including rustls) may enforce limits on
506    /// the number of `key_update` messages allowed on a given connection to prevent
507    /// denial of service.  Therefore, this should be called sparingly.
508    ///
509    /// rustls implicitly and automatically refreshes traffic keys when needed
510    /// according to the selected cipher suite's cryptographic constraints.  There
511    /// is therefore no need to call this manually to avoid cryptographic keys
512    /// "wearing out".
513    ///
514    /// The main reason to call this manually is to roll keys when it is known
515    /// a connection will be idle for a long period.
516    pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
517        self.core.refresh_traffic_keys()
518    }
519}
520
521#[cfg(feature = "std")]
522impl<Data> ConnectionCommon<Data> {
523    /// Returns an object that allows reading plaintext.
524    pub fn reader(&mut self) -> Reader<'_> {
525        let common = &mut self.core.common_state;
526        Reader {
527            received_plaintext: &mut common.received_plaintext,
528            // Are we done? i.e., have we processed all received messages, and received a
529            // close_notify to indicate that no new messages will arrive?
530            has_received_close_notify: common.has_received_close_notify,
531            has_seen_eof: common.has_seen_eof,
532        }
533    }
534
535    /// Returns an object that allows writing plaintext.
536    pub fn writer(&mut self) -> Writer<'_> {
537        Writer::new(self)
538    }
539
540    /// This function uses `io` to complete any outstanding IO for
541    /// this connection.
542    ///
543    /// This is a convenience function which solely uses other parts
544    /// of the public API.
545    ///
546    /// What this means depends on the connection  state:
547    ///
548    /// - If the connection [`is_handshaking`], then IO is performed until
549    ///   the handshake is complete.
550    /// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked
551    ///   until it is all written.
552    /// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked
553    ///   once.
554    ///
555    /// The return value is the number of bytes read from and written
556    /// to `io`, respectively.
557    ///
558    /// This function will block if `io` blocks.
559    ///
560    /// Errors from TLS record handling (i.e., from [`process_new_packets`])
561    /// are wrapped in an `io::ErrorKind::InvalidData`-kind error.
562    ///
563    /// [`is_handshaking`]: CommonState::is_handshaking
564    /// [`wants_read`]: CommonState::wants_read
565    /// [`wants_write`]: CommonState::wants_write
566    /// [`write_tls`]: ConnectionCommon::write_tls
567    /// [`read_tls`]: ConnectionCommon::read_tls
568    /// [`process_new_packets`]: ConnectionCommon::process_new_packets
569    pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error>
570    where
571        Self: Sized,
572        T: io::Read + io::Write,
573    {
574        let mut eof = false;
575        let mut wrlen = 0;
576        let mut rdlen = 0;
577
578        loop {
579            let until_handshaked = self.is_handshaking();
580
581            if !self.wants_write() && !self.wants_read() {
582                // We will make no further progress.
583                return Ok((rdlen, wrlen));
584            }
585
586            while self.wants_write() {
587                match self.write_tls(io)? {
588                    0 => {
589                        io.flush()?;
590                        return Ok((rdlen, wrlen)); // EOF.
591                    }
592                    n => wrlen += n,
593                }
594            }
595            io.flush()?;
596
597            if !until_handshaked && wrlen > 0 {
598                return Ok((rdlen, wrlen));
599            }
600
601            while !eof && self.wants_read() {
602                let read_size = match self.read_tls(io) {
603                    Ok(0) => {
604                        eof = true;
605                        Some(0)
606                    }
607                    Ok(n) => {
608                        rdlen += n;
609                        Some(n)
610                    }
611                    Err(err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do
612                    Err(err) => return Err(err),
613                };
614                if read_size.is_some() {
615                    break;
616                }
617            }
618
619            match self.process_new_packets() {
620                Ok(_) => {}
621                Err(e) => {
622                    // In case we have an alert to send describing this error,
623                    // try a last-gasp write -- but don't predate the primary
624                    // error.
625                    let _ignored = self.write_tls(io);
626                    let _ignored = io.flush();
627
628                    return Err(io::Error::new(io::ErrorKind::InvalidData, e));
629                }
630            };
631
632            // if we're doing IO until handshaked, and we believe we've finished handshaking,
633            // but process_new_packets() has queued TLS data to send, loop around again to write
634            // the queued messages.
635            if until_handshaked && !self.is_handshaking() && self.wants_write() {
636                continue;
637            }
638
639            match (eof, until_handshaked, self.is_handshaking()) {
640                (_, true, false) => return Ok((rdlen, wrlen)),
641                (_, false, _) => return Ok((rdlen, wrlen)),
642                (true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)),
643                (..) => {}
644            }
645        }
646    }
647
648    /// Extract the first handshake message.
649    ///
650    /// This is a shortcut to the `process_new_packets()` -> `process_msg()` ->
651    /// `process_handshake_messages()` path, specialized for the first handshake message.
652    pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> {
653        let mut buffer_progress = self.core.hs_deframer.progress();
654
655        let res = self
656            .core
657            .deframe(
658                None,
659                self.deframer_buffer.filled_mut(),
660                &mut buffer_progress,
661            )
662            .map(|opt| opt.map(|pm| Message::try_from(pm).map(|m| m.into_owned())));
663
664        match res? {
665            Some(Ok(msg)) => {
666                self.deframer_buffer
667                    .discard(buffer_progress.take_discard());
668                Ok(Some(msg))
669            }
670            Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)),
671            None => Ok(None),
672        }
673    }
674
675    pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) {
676        self.core.state = Ok(new);
677    }
678
679    /// Read TLS content from `rd` into the internal buffer.
680    ///
681    /// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like
682    /// a socket or pipe might).
683    ///
684    /// You should call [`process_new_packets()`] each time a call to this function succeeds in order
685    /// to empty the incoming TLS data buffer.
686    ///
687    /// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when
688    /// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through
689    /// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure:
690    ///
691    /// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`]
692    ///   each time a call to this function succeeds.
693    /// * In order to empty the incoming plaintext data buffer, you should empty it through
694    ///   the [`reader()`] after the call to [`process_new_packets()`].
695    ///
696    /// This function also returns `Ok(0)` once a `close_notify` alert has been successfully
697    /// received.  No additional data is ever read in this state.
698    ///
699    /// [`process_new_packets()`]: ConnectionCommon::process_new_packets
700    /// [`reader()`]: ConnectionCommon::reader
701    pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> {
702        if self.received_plaintext.is_full() {
703            return Err(io::Error::other("received plaintext buffer full"));
704        }
705
706        if self.has_received_close_notify {
707            return Ok(0);
708        }
709
710        let res = self
711            .deframer_buffer
712            .read(rd, self.core.hs_deframer.is_active());
713        if let Ok(0) = res {
714            self.has_seen_eof = true;
715        }
716        res
717    }
718
719    /// Writes TLS messages to `wr`.
720    ///
721    /// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr`
722    /// (after encoding and encryption).
723    ///
724    /// After this function returns, the connection buffer may not yet be fully flushed. The
725    /// [`CommonState::wants_write`] function can be used to check if the output buffer is empty.
726    pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> {
727        self.sendable_tls.write_to(wr)
728    }
729}
730
731impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> {
732    fn from(conn: &'a mut ConnectionCommon<Data>) -> Self {
733        Self {
734            common: &mut conn.core.common_state,
735            data: &mut conn.core.data,
736            sendable_plaintext: Some(&mut conn.sendable_plaintext),
737        }
738    }
739}
740
741impl<T> Deref for ConnectionCommon<T> {
742    type Target = CommonState;
743
744    fn deref(&self) -> &Self::Target {
745        &self.core.common_state
746    }
747}
748
749impl<T> DerefMut for ConnectionCommon<T> {
750    fn deref_mut(&mut self) -> &mut Self::Target {
751        &mut self.core.common_state
752    }
753}
754
755impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> {
756    fn from(core: ConnectionCore<Data>) -> Self {
757        Self {
758            core,
759            deframer_buffer: DeframerVecBuffer::default(),
760            sendable_plaintext: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
761        }
762    }
763}
764
765/// Interface shared by unbuffered client and server connections.
766pub struct UnbufferedConnectionCommon<Data> {
767    pub(crate) core: ConnectionCore<Data>,
768    wants_write: bool,
769    emitted_peer_closed_state: bool,
770}
771
772impl<Data> From<ConnectionCore<Data>> for UnbufferedConnectionCommon<Data> {
773    fn from(core: ConnectionCore<Data>) -> Self {
774        Self {
775            core,
776            wants_write: false,
777            emitted_peer_closed_state: false,
778        }
779    }
780}
781
782impl<Data> UnbufferedConnectionCommon<Data> {
783    /// Extract secrets, so they can be used when configuring kTLS, for example.
784    /// Should be used with care as it exposes secret key material.
785    pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
786        self.core.dangerous_extract_secrets()
787    }
788}
789
790impl<T> Deref for UnbufferedConnectionCommon<T> {
791    type Target = CommonState;
792
793    fn deref(&self) -> &Self::Target {
794        &self.core.common_state
795    }
796}
797
798pub(crate) struct ConnectionCore<Data> {
799    pub(crate) state: Result<Box<dyn State<Data>>, Error>,
800    pub(crate) data: Data,
801    pub(crate) common_state: CommonState,
802    pub(crate) hs_deframer: HandshakeDeframer,
803
804    /// We limit consecutive empty fragments to avoid a route for the peer to send
805    /// us significant but fruitless traffic.
806    seen_consecutive_empty_fragments: u8,
807}
808
809impl<Data> ConnectionCore<Data> {
810    pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self {
811        Self {
812            state: Ok(state),
813            data,
814            common_state,
815            hs_deframer: HandshakeDeframer::default(),
816            seen_consecutive_empty_fragments: 0,
817        }
818    }
819
820    pub(crate) fn process_new_packets(
821        &mut self,
822        deframer_buffer: &mut DeframerVecBuffer,
823        sendable_plaintext: &mut ChunkVecBuffer,
824    ) -> Result<IoState, Error> {
825        let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) {
826            Ok(state) => state,
827            Err(e) => {
828                self.state = Err(e.clone());
829                return Err(e);
830            }
831        };
832
833        let mut buffer_progress = self.hs_deframer.progress();
834
835        loop {
836            let res = self.deframe(
837                Some(&*state),
838                deframer_buffer.filled_mut(),
839                &mut buffer_progress,
840            );
841
842            let opt_msg = match res {
843                Ok(opt_msg) => opt_msg,
844                Err(e) => {
845                    self.state = Err(e.clone());
846                    deframer_buffer.discard(buffer_progress.take_discard());
847                    return Err(e);
848                }
849            };
850
851            let Some(msg) = opt_msg else {
852                break;
853            };
854
855            match self.process_msg(msg, state, Some(sendable_plaintext)) {
856                Ok(new) => state = new,
857                Err(e) => {
858                    self.state = Err(e.clone());
859                    deframer_buffer.discard(buffer_progress.take_discard());
860                    return Err(e);
861                }
862            }
863
864            if self
865                .common_state
866                .has_received_close_notify
867            {
868                // "Any data received after a closure alert has been received MUST be ignored."
869                // -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1>
870                // This is data that has already been accepted in `read_tls`.
871                buffer_progress.add_discard(deframer_buffer.filled().len());
872                break;
873            }
874
875            deframer_buffer.discard(buffer_progress.take_discard());
876        }
877
878        deframer_buffer.discard(buffer_progress.take_discard());
879        self.state = Ok(state);
880        Ok(self.common_state.current_io_state())
881    }
882
883    /// Pull a message out of the deframer and send any messages that need to be sent as a result.
884    fn deframe<'b>(
885        &mut self,
886        state: Option<&dyn State<Data>>,
887        buffer: &'b mut [u8],
888        buffer_progress: &mut BufferProgress,
889    ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
890        // before processing any more of `buffer`, return any extant messages from `hs_deframer`
891        if self.hs_deframer.has_message_ready() {
892            Ok(self.take_handshake_message(buffer, buffer_progress))
893        } else {
894            self.process_more_input(state, buffer, buffer_progress)
895        }
896    }
897
898    fn take_handshake_message<'b>(
899        &mut self,
900        buffer: &'b mut [u8],
901        buffer_progress: &mut BufferProgress,
902    ) -> Option<InboundPlainMessage<'b>> {
903        self.hs_deframer
904            .iter(buffer)
905            .next()
906            .map(|(message, discard)| {
907                buffer_progress.add_discard(discard);
908                message
909            })
910    }
911
912    fn process_more_input<'b>(
913        &mut self,
914        state: Option<&dyn State<Data>>,
915        buffer: &'b mut [u8],
916        buffer_progress: &mut BufferProgress,
917    ) -> Result<Option<InboundPlainMessage<'b>>, Error> {
918        let version_is_tls13 = matches!(
919            self.common_state.negotiated_version,
920            Some(ProtocolVersion::TLSv1_3)
921        );
922
923        let locator = Locator::new(buffer);
924
925        loop {
926            let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]);
927
928            let (message, processed) = loop {
929                let message = match iter.next().transpose() {
930                    Ok(Some(message)) => message,
931                    Ok(None) => return Ok(None),
932                    Err(err) => return Err(self.handle_deframe_error(err, state)),
933                };
934
935                let allowed_plaintext = match message.typ {
936                    // CCS messages are always plaintext.
937                    ContentType::ChangeCipherSpec => true,
938                    // Alerts are allowed to be plaintext if-and-only-if:
939                    // * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when
940                    //   keying changes based on the CCS message. Only TLS 1.3 requires these heuristics.
941                    // * We have not yet decrypted any messages from the peer - if we have we don't
942                    //   expect any plaintext.
943                    // * The payload size is indicative of a plaintext alert message.
944                    ContentType::Alert
945                        if version_is_tls13
946                            && !self
947                                .common_state
948                                .record_layer
949                                .has_decrypted()
950                            && message.payload.len() <= 2 =>
951                    {
952                        true
953                    }
954                    // In other circumstances, we expect all messages to be encrypted.
955                    _ => false,
956                };
957
958                if allowed_plaintext && !self.hs_deframer.is_active() {
959                    break (message.into_plain_message(), iter.bytes_consumed());
960                }
961
962                let message = match self
963                    .common_state
964                    .record_layer
965                    .decrypt_incoming(message)
966                {
967                    // failed decryption during trial decryption is not allowed to be
968                    // interleaved with partial handshake data.
969                    Ok(None) if !self.hs_deframer.is_aligned() => {
970                        return Err(
971                            PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(),
972                        );
973                    }
974
975                    // failed decryption during trial decryption.
976                    Ok(None) => continue,
977
978                    Ok(Some(message)) => message,
979
980                    Err(err) => return Err(self.handle_deframe_error(err, state)),
981                };
982
983                let Decrypted {
984                    want_close_before_decrypt,
985                    plaintext,
986                } = message;
987
988                if want_close_before_decrypt {
989                    self.common_state.send_close_notify();
990                }
991
992                break (plaintext, iter.bytes_consumed());
993            };
994
995            if !self.hs_deframer.is_aligned() && message.typ != ContentType::Handshake {
996                // "Handshake messages MUST NOT be interleaved with other record
997                // types.  That is, if a handshake message is split over two or more
998                // records, there MUST NOT be any other records between them."
999                // https://www.rfc-editor.org/rfc/rfc8446#section-5.1
1000                return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into());
1001            }
1002
1003            match message.payload.len() {
1004                0 => {
1005                    if self.seen_consecutive_empty_fragments
1006                        == ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX
1007                    {
1008                        return Err(PeerMisbehaved::TooManyEmptyFragments.into());
1009                    }
1010                    self.seen_consecutive_empty_fragments += 1;
1011                }
1012                _ => {
1013                    self.seen_consecutive_empty_fragments = 0;
1014                }
1015            };
1016
1017            buffer_progress.add_processed(processed);
1018
1019            // do an end-run around the borrow checker, converting `message` (containing
1020            // a borrowed slice) to an unborrowed one (containing a `Range` into the
1021            // same buffer).  the reborrow happens inside the branch that returns the
1022            // message.
1023            //
1024            // is fixed by -Zpolonius
1025            // https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions
1026            let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message);
1027
1028            if unborrowed.typ != ContentType::Handshake {
1029                let message = unborrowed.reborrow(&Delocator::new(buffer));
1030                buffer_progress.add_discard(processed);
1031                return Ok(Some(message));
1032            }
1033
1034            let message = unborrowed.reborrow(&Delocator::new(buffer));
1035            self.hs_deframer
1036                .input_message(message, &locator, buffer_progress.processed());
1037            self.hs_deframer.coalesce(buffer)?;
1038
1039            self.common_state.aligned_handshake = self.hs_deframer.is_aligned();
1040
1041            if self.hs_deframer.has_message_ready() {
1042                // trial decryption finishes with the first handshake message after it started.
1043                self.common_state
1044                    .record_layer
1045                    .finish_trial_decryption();
1046
1047                return Ok(self.take_handshake_message(buffer, buffer_progress));
1048            }
1049        }
1050    }
1051
1052    fn handle_deframe_error(&mut self, error: Error, state: Option<&dyn State<Data>>) -> Error {
1053        match error {
1054            error @ Error::InvalidMessage(_) => {
1055                if self.common_state.is_quic() {
1056                    self.common_state.quic.alert = Some(AlertDescription::DecodeError);
1057                    error
1058                } else {
1059                    self.common_state
1060                        .send_fatal_alert(AlertDescription::DecodeError, error)
1061                }
1062            }
1063            Error::PeerSentOversizedRecord => self
1064                .common_state
1065                .send_fatal_alert(AlertDescription::RecordOverflow, error),
1066            Error::DecryptError => {
1067                if let Some(state) = state {
1068                    state.handle_decrypt_error();
1069                }
1070                self.common_state
1071                    .send_fatal_alert(AlertDescription::BadRecordMac, error)
1072            }
1073
1074            error => error,
1075        }
1076    }
1077
1078    fn process_msg(
1079        &mut self,
1080        msg: InboundPlainMessage<'_>,
1081        state: Box<dyn State<Data>>,
1082        sendable_plaintext: Option<&mut ChunkVecBuffer>,
1083    ) -> Result<Box<dyn State<Data>>, Error> {
1084        // Drop CCS messages during handshake in TLS1.3
1085        if msg.typ == ContentType::ChangeCipherSpec
1086            && !self
1087                .common_state
1088                .may_receive_application_data
1089            && self.common_state.is_tls13()
1090        {
1091            if !msg.is_valid_ccs() {
1092                // "An implementation which receives any other change_cipher_spec value or
1093                //  which receives a protected change_cipher_spec record MUST abort the
1094                //  handshake with an "unexpected_message" alert."
1095                return Err(self.common_state.send_fatal_alert(
1096                    AlertDescription::UnexpectedMessage,
1097                    PeerMisbehaved::IllegalMiddleboxChangeCipherSpec,
1098                ));
1099            }
1100
1101            self.common_state
1102                .received_tls13_change_cipher_spec()?;
1103            trace!("Dropping CCS");
1104            return Ok(state);
1105        }
1106
1107        // Now we can fully parse the message payload.
1108        let msg = match Message::try_from(msg) {
1109            Ok(msg) => msg,
1110            Err(err) => {
1111                return Err(self
1112                    .common_state
1113                    .send_fatal_alert(AlertDescription::from(err), err));
1114            }
1115        };
1116
1117        // For alerts, we have separate logic.
1118        if let MessagePayload::Alert(alert) = &msg.payload {
1119            self.common_state.process_alert(alert)?;
1120            return Ok(state);
1121        }
1122
1123        self.common_state
1124            .process_main_protocol(msg, state, &mut self.data, sendable_plaintext)
1125    }
1126
1127    pub(crate) fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> {
1128        Ok(self
1129            .dangerous_into_kernel_connection()?
1130            .0)
1131    }
1132
1133    pub(crate) fn dangerous_into_kernel_connection(
1134        self,
1135    ) -> Result<(ExtractedSecrets, KernelConnection<Data>), Error> {
1136        if !self
1137            .common_state
1138            .enable_secret_extraction
1139        {
1140            return Err(Error::General("Secret extraction is disabled".into()));
1141        }
1142
1143        if self.common_state.is_handshaking() {
1144            return Err(Error::HandshakeNotComplete);
1145        }
1146
1147        if !self
1148            .common_state
1149            .sendable_tls
1150            .is_empty()
1151        {
1152            return Err(Error::General(
1153                "cannot convert into an KernelConnection while there are still buffered TLS records to send"
1154                    .into()
1155            ));
1156        }
1157
1158        let state = self.state?;
1159
1160        let record_layer = &self.common_state.record_layer;
1161        let secrets = state.extract_secrets()?;
1162        let secrets = ExtractedSecrets {
1163            tx: (record_layer.write_seq(), secrets.tx),
1164            rx: (record_layer.read_seq(), secrets.rx),
1165        };
1166
1167        let state = state.into_external_state()?;
1168        let external = KernelConnection::new(state, self.common_state)?;
1169
1170        Ok((secrets, external))
1171    }
1172
1173    pub(crate) fn export_keying_material<T: AsMut<[u8]>>(
1174        &self,
1175        mut output: T,
1176        label: &[u8],
1177        context: Option<&[u8]>,
1178    ) -> Result<T, Error> {
1179        if output.as_mut().is_empty() {
1180            return Err(Error::General(
1181                "export_keying_material with zero-length output".into(),
1182            ));
1183        }
1184
1185        match self.state.as_ref() {
1186            Ok(st) => st
1187                .export_keying_material(output.as_mut(), label, context)
1188                .map(|_| output),
1189            Err(e) => Err(e.clone()),
1190        }
1191    }
1192
1193    /// Trigger a `refresh_traffic_keys` if required by `CommonState`.
1194    fn maybe_refresh_traffic_keys(&mut self) {
1195        if mem::take(
1196            &mut self
1197                .common_state
1198                .refresh_traffic_keys_pending,
1199        ) {
1200            let _ = self.refresh_traffic_keys();
1201        }
1202    }
1203
1204    fn refresh_traffic_keys(&mut self) -> Result<(), Error> {
1205        match &mut self.state {
1206            Ok(st) => st.send_key_update_request(&mut self.common_state),
1207            Err(e) => Err(e.clone()),
1208        }
1209    }
1210}
1211
1212/// Data specific to the peer's side (client or server).
1213pub trait SideData: Debug {}
1214
1215/// An InboundPlainMessage which does not borrow its payload, but
1216/// references a range that can later be borrowed.
1217struct InboundUnborrowedMessage {
1218    typ: ContentType,
1219    version: ProtocolVersion,
1220    bounds: Range<usize>,
1221}
1222
1223impl InboundUnborrowedMessage {
1224    fn unborrow(locator: &Locator, msg: InboundPlainMessage<'_>) -> Self {
1225        Self {
1226            typ: msg.typ,
1227            version: msg.version,
1228            bounds: locator.locate(msg.payload),
1229        }
1230    }
1231
1232    fn reborrow<'b>(self, delocator: &Delocator<'b>) -> InboundPlainMessage<'b> {
1233        InboundPlainMessage {
1234            typ: self.typ,
1235            version: self.version,
1236            payload: delocator.slice_from_range(&self.bounds),
1237        }
1238    }
1239}
1240
1241/// cf. BoringSSL's `kMaxEmptyRecords`
1242/// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128>
1243const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32;