rustls/client/ech.rs
1use alloc::boxed::Box;
2use alloc::vec;
3use alloc::vec::Vec;
4
5use pki_types::{DnsName, EchConfigListBytes, ServerName};
6use subtle::ConstantTimeEq;
7
8use crate::CipherSuite::TLS_EMPTY_RENEGOTIATION_INFO_SCSV;
9use crate::client::tls13;
10use crate::crypto::SecureRandom;
11use crate::crypto::hash::Hash;
12use crate::crypto::hpke::{EncapsulatedSecret, Hpke, HpkePublicKey, HpkeSealer, HpkeSuite};
13use crate::hash_hs::{HandshakeHash, HandshakeHashBuffer};
14use crate::log::{debug, trace, warn};
15use crate::msgs::base::{Payload, PayloadU16};
16use crate::msgs::codec::{Codec, Reader};
17use crate::msgs::enums::{ExtensionType, HpkeKem};
18use crate::msgs::handshake::{
19 ClientExtensions, ClientHelloPayload, EchConfigContents, EchConfigPayload, Encoding,
20 EncryptedClientHello, EncryptedClientHelloOuter, HandshakeMessagePayload, HandshakePayload,
21 HelloRetryRequest, HpkeKeyConfig, HpkeSymmetricCipherSuite, PresharedKeyBinder,
22 PresharedKeyOffer, Random, ServerHelloPayload, ServerNamePayload,
23};
24use crate::msgs::message::{Message, MessagePayload};
25use crate::msgs::persist;
26use crate::msgs::persist::Retrieved;
27use crate::tls13::key_schedule::{
28 KeyScheduleEarly, KeyScheduleHandshakeStart, server_ech_hrr_confirmation_secret,
29};
30use crate::{
31 AlertDescription, ClientConfig, CommonState, EncryptedClientHelloError, Error, PeerMisbehaved,
32 ProtocolVersion, RejectedEch, Tls13CipherSuite,
33};
34
35/// Controls how Encrypted Client Hello (ECH) is used in a client handshake.
36#[non_exhaustive]
37#[derive(Clone, Debug)]
38pub enum EchMode {
39 /// ECH is enabled and the ClientHello will be encrypted based on the provided
40 /// configuration.
41 Enable(EchConfig),
42
43 /// No ECH configuration is available but the client should act as though it were.
44 ///
45 /// This is an anti-ossification measure, sometimes referred to as "GREASE"[^0].
46 /// [^0]: <https://www.rfc-editor.org/rfc/rfc8701>
47 Grease(EchGreaseConfig),
48}
49
50impl EchMode {
51 /// Returns true if the ECH mode will use a FIPS approved HPKE suite.
52 pub fn fips(&self) -> bool {
53 match self {
54 Self::Enable(ech_config) => ech_config.suite.fips(),
55 Self::Grease(grease_config) => grease_config.suite.fips(),
56 }
57 }
58}
59
60impl From<EchConfig> for EchMode {
61 fn from(config: EchConfig) -> Self {
62 Self::Enable(config)
63 }
64}
65
66impl From<EchGreaseConfig> for EchMode {
67 fn from(config: EchGreaseConfig) -> Self {
68 Self::Grease(config)
69 }
70}
71
72/// Configuration for performing encrypted client hello.
73///
74/// Note: differs from the protocol-encoded EchConfig (`EchConfigMsg`).
75#[derive(Clone, Debug)]
76pub struct EchConfig {
77 /// The selected EchConfig.
78 pub(crate) config: EchConfigPayload,
79
80 /// An HPKE instance corresponding to a suite from the `config` we have selected as
81 /// a compatible choice.
82 pub(crate) suite: &'static dyn Hpke,
83}
84
85impl EchConfig {
86 /// Construct an EchConfig by selecting a ECH config from the provided bytes that is compatible
87 /// with one of the given HPKE suites.
88 ///
89 /// The config list bytes should be sourced from a DNS-over-HTTPS lookup resolving the `HTTPS`
90 /// resource record for the host name of the server you wish to connect via ECH,
91 /// and extracting the ECH configuration from the `ech` parameter. The extracted bytes should
92 /// be base64 decoded to yield the `EchConfigListBytes` you provide to rustls.
93 ///
94 /// One of the provided ECH configurations must be compatible with the HPKE provider's supported
95 /// suites or an error will be returned.
96 ///
97 /// See the [`ech-client.rs`] example for a complete example of fetching ECH configs from DNS.
98 ///
99 /// [`ech-client.rs`]: https://github.com/rustls/rustls/blob/main/examples/src/bin/ech-client.rs
100 pub fn new(
101 ech_config_list: EchConfigListBytes<'_>,
102 hpke_suites: &[&'static dyn Hpke],
103 ) -> Result<Self, Error> {
104 let ech_configs = Vec::<EchConfigPayload>::read(&mut Reader::init(&ech_config_list))
105 .map_err(|_| {
106 Error::InvalidEncryptedClientHello(EncryptedClientHelloError::InvalidConfigList)
107 })?;
108
109 Self::new_for_configs(ech_configs, hpke_suites)
110 }
111
112 /// Build an EchConfig for retrying ECH using a retry config from a server's previous rejection
113 ///
114 /// Returns an error if the server provided no retry configurations in `RejectedEch`, or if
115 /// none of the retry configurations are compatible with the supported `hpke_suites`.
116 pub fn for_retry(
117 rejection: RejectedEch,
118 hpke_suites: &[&'static dyn Hpke],
119 ) -> Result<Self, Error> {
120 let Some(configs) = rejection.retry_configs else {
121 return Err(EncryptedClientHelloError::NoCompatibleConfig.into());
122 };
123
124 Self::new_for_configs(configs, hpke_suites)
125 }
126
127 pub(super) fn state(
128 &self,
129 server_name: ServerName<'static>,
130 config: &ClientConfig,
131 ) -> Result<EchState, Error> {
132 EchState::new(
133 self,
134 server_name.clone(),
135 config
136 .client_auth_cert_resolver
137 .has_certs(),
138 config.provider.secure_random,
139 config.enable_sni,
140 )
141 }
142
143 /// Compute the HPKE `SetupBaseS` `info` parameter for this ECH configuration.
144 ///
145 /// See <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-17#section-6.1>.
146 pub(crate) fn hpke_info(&self) -> Vec<u8> {
147 let mut info = Vec::with_capacity(128);
148 // "tls ech" || 0x00 || ECHConfig
149 info.extend_from_slice(b"tls ech\0");
150 self.config.encode(&mut info);
151 info
152 }
153
154 fn new_for_configs(
155 ech_configs: Vec<EchConfigPayload>,
156 hpke_suites: &[&'static dyn Hpke],
157 ) -> Result<Self, Error> {
158 // Note: we name the index var _i because if the log feature is disabled
159 // it is unused.
160 #[cfg_attr(not(feature = "log"), allow(clippy::unused_enumerate_index))]
161 for (_i, config) in ech_configs.iter().enumerate() {
162 let contents = match config {
163 EchConfigPayload::V18(contents) => contents,
164 EchConfigPayload::Unknown {
165 version: _version, ..
166 } => {
167 warn!(
168 "ECH config {} has unsupported version {:?}",
169 _i + 1,
170 _version
171 );
172 continue; // Unsupported version.
173 }
174 };
175
176 if contents.has_unknown_mandatory_extension() || contents.has_duplicate_extension() {
177 warn!("ECH config has duplicate, or unknown mandatory extensions: {contents:?}",);
178 continue; // Unsupported, or malformed extensions.
179 }
180
181 let key_config = &contents.key_config;
182 for cipher_suite in &key_config.symmetric_cipher_suites {
183 if cipher_suite.aead_id.tag_len().is_none() {
184 continue; // Unsupported EXPORT_ONLY AEAD cipher suite.
185 }
186
187 let suite = HpkeSuite {
188 kem: key_config.kem_id,
189 sym: *cipher_suite,
190 };
191 if let Some(hpke) = hpke_suites
192 .iter()
193 .find(|hpke| hpke.suite() == suite)
194 {
195 debug!(
196 "selected ECH config ID {:?} suite {:?} public_name {:?}",
197 key_config.config_id, suite, contents.public_name
198 );
199 return Ok(Self {
200 config: config.clone(),
201 suite: *hpke,
202 });
203 }
204 }
205 }
206
207 Err(EncryptedClientHelloError::NoCompatibleConfig.into())
208 }
209}
210
211/// Configuration for GREASE Encrypted Client Hello.
212#[derive(Clone, Debug)]
213pub struct EchGreaseConfig {
214 pub(crate) suite: &'static dyn Hpke,
215 pub(crate) placeholder_key: HpkePublicKey,
216}
217
218impl EchGreaseConfig {
219 /// Construct a GREASE ECH configuration.
220 ///
221 /// This configuration is used when the client wishes to offer ECH to prevent ossification,
222 /// but doesn't have a real ECH configuration to use for the remote server. In this case
223 /// a placeholder or "GREASE"[^0] extension is used.
224 ///
225 /// Returns an error if the HPKE provider does not support the given suite.
226 ///
227 /// [^0]: <https://www.rfc-editor.org/rfc/rfc8701>
228 pub fn new(suite: &'static dyn Hpke, placeholder_key: HpkePublicKey) -> Self {
229 Self {
230 suite,
231 placeholder_key,
232 }
233 }
234
235 /// Build a GREASE ECH extension based on the placeholder configuration.
236 ///
237 /// See <https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#name-grease-ech> for
238 /// more information.
239 pub(crate) fn grease_ext(
240 &self,
241 secure_random: &'static dyn SecureRandom,
242 inner_name: ServerName<'static>,
243 outer_hello: &ClientHelloPayload,
244 ) -> Result<EncryptedClientHello, Error> {
245 trace!("Preparing GREASE ECH extension");
246
247 // Pick a random config id.
248 let mut config_id: [u8; 1] = [0; 1];
249 secure_random.fill(&mut config_id[..])?;
250
251 let suite = self.suite.suite();
252
253 // Construct a dummy ECH state - we don't have a real ECH config from a server since
254 // this is for GREASE.
255 let mut grease_state = EchState::new(
256 &EchConfig {
257 config: EchConfigPayload::V18(EchConfigContents {
258 key_config: HpkeKeyConfig {
259 config_id: config_id[0],
260 kem_id: HpkeKem::DHKEM_P256_HKDF_SHA256,
261 public_key: PayloadU16::new(self.placeholder_key.0.clone()),
262 symmetric_cipher_suites: vec![suite.sym],
263 },
264 maximum_name_length: 0,
265 public_name: DnsName::try_from("filler").unwrap(),
266 extensions: Vec::default(),
267 }),
268 suite: self.suite,
269 },
270 inner_name,
271 false,
272 secure_random,
273 false, // Does not matter if we enable/disable SNI here. Inner hello is not used.
274 )?;
275
276 // Construct an inner hello using the outer hello - this allows us to know the size of
277 // dummy payload we should use for the GREASE extension.
278 let encoded_inner_hello = grease_state.encode_inner_hello(outer_hello, None, &None);
279
280 // Generate a payload of random data equivalent in length to a real inner hello.
281 let payload_len = encoded_inner_hello.len()
282 + suite
283 .sym
284 .aead_id
285 .tag_len()
286 // Safety: we have confirmed the AEAD is supported when building the config. All
287 // supported AEADs have a tag length.
288 .unwrap();
289 let mut payload = vec![0; payload_len];
290 secure_random.fill(&mut payload)?;
291
292 // Return the GREASE extension.
293 Ok(EncryptedClientHello::Outer(EncryptedClientHelloOuter {
294 cipher_suite: suite.sym,
295 config_id: config_id[0],
296 enc: PayloadU16::new(grease_state.enc.0),
297 payload: PayloadU16::new(payload),
298 }))
299 }
300}
301
302/// An enum representing ECH offer status.
303#[non_exhaustive]
304#[derive(Debug, Clone, Copy, Eq, PartialEq)]
305pub enum EchStatus {
306 /// ECH was not offered - it is a normal TLS handshake.
307 NotOffered,
308 /// GREASE ECH was sent. This is not considered offering ECH.
309 Grease,
310 /// ECH was offered but we do not yet know whether the offer was accepted or rejected.
311 Offered,
312 /// ECH was offered and the server accepted.
313 Accepted,
314 /// ECH was offered and the server rejected.
315 Rejected,
316}
317
318/// Contextual data for a TLS client handshake that has offered encrypted client hello (ECH).
319pub(crate) struct EchState {
320 // The public DNS name from the ECH configuration we've chosen - this is included as the SNI
321 // value for the "outer" client hello. It can only be a DnsName, not an IP address.
322 pub(crate) outer_name: DnsName<'static>,
323 // If we're resuming in the inner hello, this is the early key schedule to use for encrypting
324 // early data if the ECH offer is accepted.
325 pub(crate) early_data_key_schedule: Option<KeyScheduleEarly>,
326 // A random value we use for the inner hello.
327 pub(crate) inner_hello_random: Random,
328 // A transcript buffer maintained for the inner hello. Once ECH is confirmed we switch to
329 // using this transcript for the handshake.
330 pub(crate) inner_hello_transcript: HandshakeHashBuffer,
331 // A source of secure random data.
332 secure_random: &'static dyn SecureRandom,
333 // An HPKE sealer context that can be used for encrypting ECH data.
334 sender: Box<dyn HpkeSealer>,
335 // The ID of the ECH configuration we've chosen - this is included in the outer ECH extension.
336 config_id: u8,
337 // The private server name we'll use for the inner protected hello.
338 inner_name: ServerName<'static>,
339 // The advertised maximum name length from the ECH configuration we've chosen - this is used
340 // for padding calculations.
341 maximum_name_length: u8,
342 // A supported symmetric cipher suite from the ECH configuration we've chosen - this is
343 // included in the outer ECH extension.
344 cipher_suite: HpkeSymmetricCipherSuite,
345 // A secret encapsulated to the public key of the remote server. This is included in the
346 // outer ECH extension for non-retry outer hello messages.
347 enc: EncapsulatedSecret,
348 // Whether the inner client hello should contain a server name indication (SNI) extension.
349 enable_sni: bool,
350 // The extensions sent in the inner hello.
351 sent_extensions: Vec<ExtensionType>,
352}
353
354impl EchState {
355 pub(crate) fn new(
356 config: &EchConfig,
357 inner_name: ServerName<'static>,
358 client_auth_enabled: bool,
359 secure_random: &'static dyn SecureRandom,
360 enable_sni: bool,
361 ) -> Result<Self, Error> {
362 let EchConfigPayload::V18(config_contents) = &config.config else {
363 // the public EchConfig::new() constructor ensures we only have supported
364 // configurations.
365 unreachable!("ECH config version mismatch");
366 };
367 let key_config = &config_contents.key_config;
368
369 // Encapsulate a secret for the server's public key, and set up a sender context
370 // we can use to seal messages.
371 let (enc, sender) = config.suite.setup_sealer(
372 &config.hpke_info(),
373 &HpkePublicKey(key_config.public_key.0.clone()),
374 )?;
375
376 // Start a new transcript buffer for the inner hello.
377 let mut inner_hello_transcript = HandshakeHashBuffer::new();
378 if client_auth_enabled {
379 inner_hello_transcript.set_client_auth_enabled();
380 }
381
382 Ok(Self {
383 secure_random,
384 sender,
385 config_id: key_config.config_id,
386 inner_name,
387 outer_name: config_contents.public_name.clone(),
388 maximum_name_length: config_contents.maximum_name_length,
389 cipher_suite: config.suite.suite().sym,
390 enc,
391 inner_hello_random: Random::new(secure_random)?,
392 inner_hello_transcript,
393 early_data_key_schedule: None,
394 enable_sni,
395 sent_extensions: Vec::new(),
396 })
397 }
398
399 /// Construct a ClientHelloPayload offering ECH.
400 ///
401 /// An outer hello, with a protected inner hello for the `inner_name` will be returned, and the
402 /// ECH context will be updated to reflect the inner hello that was offered.
403 ///
404 /// If `retry_req` is `Some`, then the outer hello will be constructed for a hello retry request.
405 ///
406 /// If `resuming` is `Some`, then the inner hello will be constructed for a resumption handshake.
407 pub(crate) fn ech_hello(
408 &mut self,
409 mut outer_hello: ClientHelloPayload,
410 retry_req: Option<&HelloRetryRequest>,
411 resuming: &Option<Retrieved<&persist::Tls13ClientSessionValue>>,
412 ) -> Result<ClientHelloPayload, Error> {
413 trace!(
414 "Preparing ECH offer {}",
415 if retry_req.is_some() { "for retry" } else { "" }
416 );
417
418 // Construct the encoded inner hello and update the transcript.
419 let encoded_inner_hello = self.encode_inner_hello(&outer_hello, retry_req, resuming);
420
421 // Complete the ClientHelloOuterAAD with an ech extension, the payload should be a placeholder
422 // of size L, all zeroes. L == length of encrypting encoded client hello inner w/ the selected
423 // HPKE AEAD. (sum of plaintext + tag length, typically).
424 let payload_len = encoded_inner_hello.len()
425 + self
426 .cipher_suite
427 .aead_id
428 .tag_len()
429 // Safety: we've already verified this AEAD is supported when loading the config
430 // that was used to create the ECH context. All supported AEADs have a tag length.
431 .unwrap();
432
433 // Outer hello's created in response to a hello retry request omit the enc value.
434 let enc = match retry_req.is_some() {
435 true => Vec::default(),
436 false => self.enc.0.clone(),
437 };
438
439 fn outer_hello_ext(ctx: &EchState, enc: Vec<u8>, payload: Vec<u8>) -> EncryptedClientHello {
440 EncryptedClientHello::Outer(EncryptedClientHelloOuter {
441 cipher_suite: ctx.cipher_suite,
442 config_id: ctx.config_id,
443 enc: PayloadU16::new(enc),
444 payload: PayloadU16::new(payload),
445 })
446 }
447
448 // The outer handshake is not permitted to resume a session. If we're resuming in the
449 // inner handshake we remove the PSK extension from the outer hello, replacing it
450 // with a GREASE PSK to implement the "ClientHello Malleability Mitigation" mentioned
451 // in 10.12.3.
452 if let Some(psk_offer) = outer_hello.preshared_key_offer.as_mut() {
453 self.grease_psk(psk_offer)?;
454 }
455
456 // To compute the encoded AAD we add a placeholder extension with an empty payload.
457 outer_hello.encrypted_client_hello =
458 Some(outer_hello_ext(self, enc.clone(), vec![0; payload_len]));
459
460 // Next we compute the proper extension payload.
461 let payload = self
462 .sender
463 .seal(&outer_hello.get_encoding(), &encoded_inner_hello)?;
464
465 // And then we replace the placeholder extension with the real one.
466 outer_hello.encrypted_client_hello = Some(outer_hello_ext(self, enc, payload));
467
468 Ok(outer_hello)
469 }
470
471 /// Confirm whether an ECH offer was accepted based on examining the server hello.
472 pub(crate) fn confirm_acceptance(
473 self,
474 ks: &mut KeyScheduleHandshakeStart,
475 server_hello: &ServerHelloPayload,
476 server_hello_encoded: &Payload<'_>,
477 hash: &'static dyn Hash,
478 ) -> Result<Option<EchAccepted>, Error> {
479 // Start the inner transcript hash now that we know the hash algorithm to use.
480 let inner_transcript = self
481 .inner_hello_transcript
482 .start_hash(hash);
483
484 // Fork the transcript that we've started with the inner hello to use for a confirmation step.
485 // We need to preserve the original inner_transcript to use if this confirmation succeeds.
486 let mut confirmation_transcript = inner_transcript.clone();
487
488 // Add the server hello confirmation - this is computed by altering the received
489 // encoding rather than reencoding it.
490 confirmation_transcript
491 .add_message(&Self::server_hello_conf(server_hello, server_hello_encoded));
492
493 // Derive a confirmation secret from the inner hello random and the confirmation transcript.
494 let derived = ks.server_ech_confirmation_secret(
495 self.inner_hello_random.0.as_ref(),
496 confirmation_transcript.current_hash(),
497 );
498
499 // Check that first 8 digits of the derived secret match the last 8 digits of the original
500 // server random. This match signals that the server accepted the ECH offer.
501 // Indexing safety: Random is [0; 32] by construction.
502
503 match ConstantTimeEq::ct_eq(derived.as_ref(), server_hello.random.0[24..].as_ref()).into() {
504 true => {
505 trace!("ECH accepted by server");
506 Ok(Some(EchAccepted {
507 transcript: inner_transcript,
508 random: self.inner_hello_random,
509 sent_extensions: self.sent_extensions,
510 }))
511 }
512 false => {
513 trace!("ECH rejected by server");
514 Ok(None)
515 }
516 }
517 }
518
519 pub(crate) fn confirm_hrr_acceptance(
520 &self,
521 hrr: &HelloRetryRequest,
522 cs: &Tls13CipherSuite,
523 common: &mut CommonState,
524 ) -> Result<bool, Error> {
525 // The client checks for the "encrypted_client_hello" extension.
526 let ech_conf = match &hrr.encrypted_client_hello {
527 // If none is found, the server has implicitly rejected ECH.
528 None => return Ok(false),
529 // Otherwise, if it has a length other than 8, the client aborts the
530 // handshake with a "decode_error" alert.
531 Some(ech_conf) if ech_conf.bytes().len() != 8 => {
532 return Err({
533 common.send_fatal_alert(
534 AlertDescription::DecodeError,
535 PeerMisbehaved::IllegalHelloRetryRequestWithInvalidEch,
536 )
537 });
538 }
539 Some(ech_conf) => ech_conf,
540 };
541
542 // Otherwise the client computes hrr_accept_confirmation as described in Section
543 // 7.2.1
544 let confirmation_transcript = self.inner_hello_transcript.clone();
545 let mut confirmation_transcript =
546 confirmation_transcript.start_hash(cs.common.hash_provider);
547 confirmation_transcript.rollup_for_hrr();
548 confirmation_transcript.add_message(&Self::hello_retry_request_conf(hrr));
549
550 let derived = server_ech_hrr_confirmation_secret(
551 cs.hkdf_provider,
552 &self.inner_hello_random.0,
553 confirmation_transcript.current_hash(),
554 );
555
556 match ConstantTimeEq::ct_eq(derived.as_ref(), ech_conf.bytes()).into() {
557 true => {
558 trace!("ECH accepted by server in hello retry request");
559 Ok(true)
560 }
561 false => {
562 trace!("ECH rejected by server in hello retry request");
563 Ok(false)
564 }
565 }
566 }
567
568 /// Update the ECH context inner hello transcript based on a received hello retry request message.
569 ///
570 /// This will start the in-progress transcript using the given `hash`, convert it into an HRR
571 /// buffer, and then add the hello retry message `m`.
572 pub(crate) fn transcript_hrr_update(&mut self, hash: &'static dyn Hash, m: &Message<'_>) {
573 trace!("Updating ECH inner transcript for HRR");
574
575 let inner_transcript = self
576 .inner_hello_transcript
577 .clone()
578 .start_hash(hash);
579
580 let mut inner_transcript_buffer = inner_transcript.into_hrr_buffer();
581 inner_transcript_buffer.add_message(m);
582 self.inner_hello_transcript = inner_transcript_buffer;
583 }
584
585 // 5.1 "Encoding the ClientHelloInner"
586 fn encode_inner_hello(
587 &mut self,
588 outer_hello: &ClientHelloPayload,
589 retryreq: Option<&HelloRetryRequest>,
590 resuming: &Option<Retrieved<&persist::Tls13ClientSessionValue>>,
591 ) -> Vec<u8> {
592 // Start building an inner hello using the outer_hello as a template.
593 let mut inner_hello = ClientHelloPayload {
594 // Some information is copied over as-is.
595 client_version: outer_hello.client_version,
596 session_id: outer_hello.session_id,
597 compression_methods: outer_hello.compression_methods.clone(),
598
599 // We will build up the included extensions ourselves.
600 extensions: Box::new(ClientExtensions::default()),
601
602 // Set the inner hello random to the one we generated when creating the ECH state.
603 // We hold on to the inner_hello_random in the ECH state to use later for confirming
604 // whether ECH was accepted or not.
605 random: self.inner_hello_random,
606
607 // We remove the empty renegotiation info SCSV from the outer hello's ciphersuite.
608 // Similar to the TLS 1.2 specific extensions we will filter out, this is seen as a
609 // TLS 1.2 only feature by bogo.
610 cipher_suites: outer_hello
611 .cipher_suites
612 .iter()
613 .filter(|cs| **cs != TLS_EMPTY_RENEGOTIATION_INFO_SCSV)
614 .cloned()
615 .collect(),
616 };
617
618 inner_hello.order_seed = outer_hello.order_seed;
619
620 // The inner hello will always have an inner variant of the ECH extension added.
621 // See Section 6.1 rule 4.
622 inner_hello.encrypted_client_hello = Some(EncryptedClientHello::Inner);
623
624 let inner_sni = match &self.inner_name {
625 // The inner hello only gets a SNI value if enable_sni is true and the inner name
626 // is a domain name (not an IP address).
627 ServerName::DnsName(dns_name) if self.enable_sni => Some(dns_name),
628 _ => None,
629 };
630
631 // Now we consider each of the outer hello's extensions - we can either:
632 // 1. Omit the extension if it isn't appropriate (e.g. is a TLS 1.2 extension).
633 // 2. Add the extension to the inner hello as-is.
634 // 3. Compress the extension, by collecting it into a list of to-be-compressed
635 // extensions we'll handle separately.
636 let outer_extensions = outer_hello.used_extensions_in_encoding_order();
637 let mut compressed_exts = Vec::with_capacity(outer_extensions.len());
638 for ext in outer_extensions {
639 // Some outer hello extensions are only useful in the context where a TLS 1.3
640 // connection allows TLS 1.2. This isn't the case for ECH so we skip adding them
641 // to the inner hello.
642 if matches!(
643 ext,
644 ExtensionType::ExtendedMasterSecret
645 | ExtensionType::SessionTicket
646 | ExtensionType::ECPointFormats
647 ) {
648 continue;
649 }
650
651 if ext == ExtensionType::ServerName {
652 // We may want to replace the outer hello SNI with our own inner hello specific SNI.
653 if let Some(sni_value) = inner_sni {
654 inner_hello.server_name = Some(ServerNamePayload::from(sni_value));
655 }
656 // We don't want to add, or compress, the SNI from the outer hello.
657 continue;
658 }
659
660 // Compressed extensions need to be put aside to include in one contiguous block.
661 // Uncompressed extensions get added directly to the inner hello.
662 if ext.ech_compress() {
663 compressed_exts.push(ext);
664 }
665
666 inner_hello.clone_one(outer_hello, ext);
667 }
668
669 // We've added all the uncompressed extensions. Now we need to add the contiguous
670 // block of to-be-compressed extensions.
671 inner_hello.contiguous_extensions = compressed_exts.clone();
672
673 // Note which extensions we're sending in the inner hello. This may differ from
674 // the outer hello (e.g. the inner hello may omit SNI while the outer hello will
675 // always have the ECH cover name in SNI).
676 self.sent_extensions = inner_hello.collect_used();
677
678 // If we're resuming, we need to update the PSK binder in the inner hello.
679 if let Some(resuming) = resuming.as_ref() {
680 let mut chp = HandshakeMessagePayload(HandshakePayload::ClientHello(inner_hello));
681
682 // Retain the early key schedule we get from processing the binder.
683 self.early_data_key_schedule = Some(tls13::fill_in_psk_binder(
684 resuming,
685 &self.inner_hello_transcript,
686 &mut chp,
687 ));
688
689 // fill_in_psk_binder works on an owned HandshakeMessagePayload, so we need to
690 // extract our inner hello back out of it to retain ownership.
691 inner_hello = match chp.0 {
692 HandshakePayload::ClientHello(chp) => chp,
693 // Safety: we construct the HMP above and know its type unconditionally.
694 _ => unreachable!(),
695 };
696 }
697
698 trace!("ECH Inner Hello: {inner_hello:#?}");
699
700 // Encode the inner hello according to the rules required for ECH. This differs
701 // from the standard encoding in several ways. Notably this is where we will
702 // replace the block of contiguous to-be-compressed extensions with a marker.
703 let mut encoded_hello = inner_hello.ech_inner_encoding(compressed_exts);
704
705 // Calculate padding
706 // max_name_len = L
707 let max_name_len = self.maximum_name_length;
708 let max_name_len = if max_name_len > 0 { max_name_len } else { 255 };
709
710 let padding_len = match &self.inner_name {
711 ServerName::DnsName(name) => {
712 // name.len() = D
713 // max(0, L - D)
714 core::cmp::max(
715 0,
716 max_name_len.saturating_sub(name.as_ref().len() as u8) as usize,
717 )
718 }
719 _ => {
720 // L + 9
721 // "This is the length of a "server_name" extension with an L-byte name."
722 // We widen to usize here to avoid overflowing u8 + u8.
723 max_name_len as usize + 9
724 }
725 };
726
727 // Let L be the length of the EncodedClientHelloInner with all the padding computed so far
728 // Let N = 31 - ((L - 1) % 32) and add N bytes of padding.
729 let padding_len = 31 - ((encoded_hello.len() + padding_len - 1) % 32);
730 encoded_hello.extend(vec![0; padding_len]);
731
732 // Construct the inner hello message that will be used for the transcript.
733 let inner_hello_msg = Message {
734 version: match retryreq {
735 // <https://datatracker.ietf.org/doc/html/rfc8446#section-5.1>:
736 // "This value MUST be set to 0x0303 for all records generated
737 // by a TLS 1.3 implementation ..."
738 Some(_) => ProtocolVersion::TLSv1_2,
739 // "... other than an initial ClientHello (i.e., one not
740 // generated after a HelloRetryRequest), where it MAY also be
741 // 0x0301 for compatibility purposes"
742 //
743 // (retryreq == None means we're in the "initial ClientHello" case)
744 None => ProtocolVersion::TLSv1_0,
745 },
746 payload: MessagePayload::handshake(HandshakeMessagePayload(
747 HandshakePayload::ClientHello(inner_hello),
748 )),
749 };
750
751 // Update the inner transcript buffer with the inner hello message.
752 self.inner_hello_transcript
753 .add_message(&inner_hello_msg);
754
755 encoded_hello
756 }
757
758 // See https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-18#name-grease-psk
759 fn grease_psk(&self, psk_offer: &mut PresharedKeyOffer) -> Result<(), Error> {
760 for ident in psk_offer.identities.iter_mut() {
761 // "For each PSK identity advertised in the ClientHelloInner, the
762 // client generates a random PSK identity with the same length."
763 self.secure_random
764 .fill(&mut ident.identity.0)?;
765 // "It also generates a random, 32-bit, unsigned integer to use as
766 // the obfuscated_ticket_age."
767 let mut ticket_age = [0_u8; 4];
768 self.secure_random
769 .fill(&mut ticket_age)?;
770 ident.obfuscated_ticket_age = u32::from_be_bytes(ticket_age);
771 }
772
773 // "Likewise, for each inner PSK binder, the client generates a random string
774 // of the same length."
775 psk_offer.binders = psk_offer
776 .binders
777 .iter()
778 .map(|old_binder| {
779 // We can't access the wrapped binder PresharedKeyBinder's PayloadU8 mutably,
780 // so we construct new PresharedKeyBinder's from scratch with the same length.
781 let mut new_binder = vec![0; old_binder.as_ref().len()];
782 self.secure_random
783 .fill(&mut new_binder)?;
784 Ok::<PresharedKeyBinder, Error>(PresharedKeyBinder::from(new_binder))
785 })
786 .collect::<Result<_, _>>()?;
787 Ok(())
788 }
789
790 fn server_hello_conf(
791 server_hello: &ServerHelloPayload,
792 server_hello_encoded: &Payload<'_>,
793 ) -> Message<'static> {
794 // The confirmation is computed over the server hello, which has had
795 // its `random` field altered to zero the final 8 bytes.
796 //
797 // nb. we don't require that we can round-trip a `ServerHelloPayload`, to
798 // allow for efficiency in its in-memory representation. That means
799 // we operate here on the received encoding, as the confirmation needs
800 // to be computed on that.
801 let mut encoded = server_hello_encoded.clone().into_vec();
802 encoded[SERVER_HELLO_ECH_CONFIRMATION_SPAN].fill(0x00);
803
804 Message {
805 version: ProtocolVersion::TLSv1_3,
806 payload: MessagePayload::Handshake {
807 encoded: Payload::Owned(encoded),
808 parsed: HandshakeMessagePayload(HandshakePayload::ServerHello(
809 server_hello.clone(),
810 )),
811 },
812 }
813 }
814
815 fn hello_retry_request_conf(retry_req: &HelloRetryRequest) -> Message<'_> {
816 Self::ech_conf_message(HandshakeMessagePayload(
817 HandshakePayload::HelloRetryRequest(retry_req.clone()),
818 ))
819 }
820
821 fn ech_conf_message(hmp: HandshakeMessagePayload<'_>) -> Message<'_> {
822 let mut hmp_encoded = Vec::new();
823 hmp.payload_encode(&mut hmp_encoded, Encoding::EchConfirmation);
824 Message {
825 version: ProtocolVersion::TLSv1_3,
826 payload: MessagePayload::Handshake {
827 encoded: Payload::new(hmp_encoded),
828 parsed: hmp,
829 },
830 }
831 }
832}
833
834/// The last eight bytes of the ServerHello's random, taken from a Handshake message containing it.
835///
836/// This has:
837/// - a HandshakeType (1 byte),
838/// - an exterior length (3 bytes),
839/// - the legacy_version (2 bytes), and
840/// - the balance of the random field (24 bytes).
841const SERVER_HELLO_ECH_CONFIRMATION_SPAN: core::ops::Range<usize> =
842 (1 + 3 + 2 + 24)..(1 + 3 + 2 + 32);
843
844/// Returned from EchState::check_acceptance when the server has accepted the ECH offer.
845///
846/// Holds the state required to continue the handshake with the inner hello from the ECH offer.
847pub(crate) struct EchAccepted {
848 pub(crate) transcript: HandshakeHash,
849 pub(crate) random: Random,
850 pub(crate) sent_extensions: Vec<ExtensionType>,
851}
852
853pub(crate) fn fatal_alert_required(
854 retry_configs: Option<Vec<EchConfigPayload>>,
855 common: &mut CommonState,
856) -> Error {
857 common.send_fatal_alert(
858 AlertDescription::EncryptedClientHelloRequired,
859 RejectedEch { retry_configs },
860 )
861}
862
863#[cfg(test)]
864mod tests {
865 use super::*;
866 use crate::enums::CipherSuite;
867 use crate::msgs::handshake::{Random, ServerExtensions, SessionId};
868
869 #[test]
870 fn server_hello_conf_alters_server_hello_random() {
871 let server_hello = ServerHelloPayload {
872 legacy_version: ProtocolVersion::TLSv1_2,
873 random: Random([0xffu8; 32]),
874 session_id: SessionId::empty(),
875 cipher_suite: CipherSuite::TLS13_AES_256_GCM_SHA384,
876 compression_method: crate::msgs::enums::Compression::Null,
877 extensions: Box::new(ServerExtensions::default()),
878 };
879 let message = Message {
880 version: ProtocolVersion::TLSv1_3,
881 payload: MessagePayload::handshake(HandshakeMessagePayload(
882 HandshakePayload::ServerHello(server_hello.clone()),
883 )),
884 };
885 let Message {
886 payload:
887 MessagePayload::Handshake {
888 encoded: server_hello_encoded_before,
889 ..
890 },
891 ..
892 } = &message
893 else {
894 unreachable!("ServerHello is a handshake message");
895 };
896
897 let message = EchState::server_hello_conf(&server_hello, server_hello_encoded_before);
898
899 let Message {
900 payload:
901 MessagePayload::Handshake {
902 encoded: server_hello_encoded_after,
903 ..
904 },
905 ..
906 } = &message
907 else {
908 unreachable!("ServerHello is a handshake message");
909 };
910
911 assert_eq!(
912 std::format!("{server_hello_encoded_before:x?}"),
913 "020000280303ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001302000000",
914 "beforehand eight bytes at end of Random should be 0xff here ^^^^^^^^^^^^^^^^ "
915 );
916 assert_eq!(
917 std::format!("{server_hello_encoded_after:x?}"),
918 "020000280303ffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001302000000",
919 " afterwards those bytes are zeroed ^^^^^^^^^^^^^^^^ "
920 );
921 }
922}